Lecture #9: Accounts, Gas, and
Virtual Machines

COMS 4995-001:

The Science of Blockchains
URL: https://timroughgarden.org/s25/

Tim Roughgarden

The Execution Layer

Execution layer: keep state of the virtual machine up-to-date.

tx2

tx3

tx1

tx4

consensus transaction sequence

@I@@

o=

blockchain protocol
(execution layer)
[replicated at each
physical machine]

simulated (virtual) computer
[replicated at each physical
machine]

A Cartoon of Web3 (Refined)

user

1

applications/smart contracts
blockchain [_ : :
orotocol execution layer/virtual machine
consensus layer

Internet

Blockchain protocol:

 like an operating system, a blockchain protocol:
— acts as a “master program” to coordinate all apps/smart contracts
— provides a virtual machine to developers of applications

 “decentralized” like the Internet

Goals for Lecture #9

1. The account-base model (used in Ethereum, Solana, etc.).
— explicit notion of account IDs and balances, programs as accounts

2. Transactions.
— high-level: the basic unit of user intent
— low-level: a snippet of VM code

3. Virtual machines.
— how to execute transactions with arbitrary code

4. Metering computation.

How to Think About the Execution Layer

Questions: what are the possible “states” of the virtual machine?

* how are transactions described (both high-level and low-level)?
« what state transition results from executing a transaction?

* how does a validator represent state and carry out transitions?

How to Think About the Execution Layer

Questions: what are the possible “states” of the virtual machine?

* how are transactions described (both high-level and low-level)?
« what state transition results from executing a transaction?

* how does a validator represent state and carry out transitions?

Note: will now treat the consensus layer as a “black box,”
consider a single validator processing a transaction seguence.

— separation between consensus and execution varies with protocol

How to Think About the Execution Layer

Questions: what are the possible “states” of the virtual machine?
* how are transactions described (both high-level and low-level)?
« what state transition results from executing a transaction?

* how does a validator represent state and carry out transitions?

Note: will now treat the consensus layer as a “black box,”
consider a single validator processing a transaction seguence.

— separation between consensus and execution varies with protocol

Next: account-based general-purpose execution layers.

Account-Based Execution Layers

Examples: Ethereum, Solana, Move (Diem/Aptos/Sui), etc.

Account-Based Execution Layers

Examples: Ethereum, Solana, Move (Diem/Aptos/Sui), etc.

ldea: “state” of an account-based protocol specified by:

« a set of current accounts (indexed by accountlID, e.g. a pk)
— generally, an account could correspond to a user or a program/contract

Account-Based Execution Layers

Examples: Ethereum, Solana, Move (Diem/Aptos/Sui), etc.

ldea: “state” of an account-based protocol specified by:

« a set of current accounts (indexed by accountlID, e.g. a pk)
— generally, an account could correspond to a user or a program/contract

* the state of each of these accounts, which could include:
— balance in native cryptocurrency (ETH, SOL, etc.)

e contracts can also have non-zero balances

— arbitrary persistent and mutable data
— VM code a.k.a. bytecode (typically immutable)

10

Account-Based Execution Layers

ldea: “state” of an account-based protocol specified by:
« a set of current accounts (indexed by accountlD, e.g. a pk)

e the state of each of these accounts, which could include:
— e.g., balance, data, and or bytecode

11

Account-Based Execution Layers

ldea: “state” of an account-based protocol specified by:
« a set of current accounts (indexed by accountlD, e.g. a pk)

e the state of each of these accounts, which could include:
— e.g., balance, data, and or bytecode

Example: Ethereum.
« distinguish user accounts ("EOASs”) vs. contract accounts

— EOA = no data, no code
— contract account = both data and code (e.g., NFT contract)

12

Account-Based Execution Layers

ldea: “state” of an account-based protocol specified by:
« a set of current accounts (indexed by accountlD, e.g. a pk)

e the state of each of these accounts, which could include:
— e.g., balance, data, and or bytecode

Examples: Ethereum vs. Solana.
» Ethereum: distinguish user accounts vs. contract accounts
— EOA = no data, no code; contract account =» both data and code

» Solana: distinction between user vs. program accounts blurrier,
program code and data stored in separate accounts

13

Account-Based Execution Layers

ldea: “state” of an account-based protocol specified by:
« a set of current accounts (indexed by accountlD, e.g. a pk)

e the state of each of these accounts, which could include:
— e.g., balance, data, and or bytecode

Examples: Ethereum vs. Solana.

Note: protocol does not fully prescribe how to represent state.
— e.g., multiple execution clients in Ethereum, differ in many detalils
— In practice, state typically includes metadata that strongly encourages a

particular implementation (e.g., Merkle trees, see next week) ”

Basic ingredients:

Transactions

15

Transactions

Basic ingredients:

a function call (to some contract, with some arguments)
any necessary signatures

priority fee
— to encourage validators to include this transaction over others

16

Transactions

Basic ingredients:

a function call (to some contract, with some arguments)
any necessary signatures

priority fee

— to encourage validators to include this transaction over others

Extras:

Information about resources required by transaction
defense against replay attacks

17

Example: Ethereum Transactions

each transaction sent by a single EOA (i.e., only one signer)

signature by sender required
— can back out sender’s public key (+ hence accountID) from signature

18

Example: Ethereum Transactions

each transaction sent by a single EOA (i.e., only one signer)

signature by sender required
— can back out sender’s public key (+ hence accountID) from signature

recipient (EOA or contract account, specified by accountlD)

19

Example: Ethereum Transactions

each transaction sent by a single EOA (i.e., only one signer)

signature by sender required
— can back out sender’s public key (+ hence accountID) from signature

recipient (EOA or contract account, specified by accountlD)
value (in ETH)
data (e.g., function call + arguments)

20

Example: Ethereum Transactions

each transaction sent by a single EOA (i.e., only one signer)

signature by sender required
— can back out sender’s public key (+ hence accountID) from signature

recipient (EOA or contract account, specified by accountlD)
value (in ETH)

data (e.g., function call + arguments)

“gas limit” (computation required by transaction (= “size”))
“gas price” (priority fee to be paid per-unit-gas)

21

Example: Ethereum Transactions

each transaction sent by a single EOA (i.e., only one signer)

signature by sender required
— can back out sender’s public key (+ hence accountID) from signature

recipient (EOA or contract account, specified by accountlD)
value (in ETH)

data (e.g., function call + arguments)

“gas limit” (computation required by transaction (= “size”))
“gas price” (priority fee to be paid per-unit-gas)

nonce (for replay attack protection)

. . y 22
— for tx to be valid, needs to match nonce in sender’s account

Example:
USDC Transfer

(® Transaction Hash:
@ Status:

(® Block:

@ Timestamp:

% Transaction Action:

(® Sponsored:

® From:

@ Interacted With (To):

(@ ERC-20 Tokens Transferred:

® Value:
(@ Transaction Fee:

(® Gas Price:

(@ Gas Limit & Usage by Txn:
(3 Gas Fees:

(® Burnt & Txn Savings Fees:

(® Other Attributes:

@ Input Data:

0x3b%adaBe0cbf69fb4affof40e9946bf3d5585f47ed03b403fd50f570870be168

© Success
21879725 5Block Confirmations

® 53 secs ago (Feb-19-2025 10:09:47 AM UTC)

Transfer 101.4 ($101.39) @ USDC To 0x618a16ED7d4C39EFB5A6342C3972c896757a1b79

Oxc4a3Dcd48118D77bE44E7853bd5938F7448c7bD7

0xA0b86991c6218b36c1d19D4a2e9EbOcE3606eB48 (Circle: USDC Token)]

PARIEUSEEN Net Transfers

From Oxc4a3Dcd4...7448c7bD7 To 0x618a16ED...6757a1b79 For 101.4 ($101.39) @ USDC (USDC)

4 0ETH ($0.00)
0.00008286227098344 ETH ($0.23)

1.442086164 Gwei (0.000000001442086164 ETH)

94,566 57,460 (60.76%)
Base: 0.732318081 Gwei | Max: 1.6 Gwei | Max Priority: 0.709768083 Gwei

Burnt: 0.00004207899693426 ETH ($0.11) & Txn Savings: 0.00000907372901656 ETH ($0.02)

Txn Type: 2 (EIP-1559) Nonce: 0 Position In Block: 165

Function: transfer(address to,uint256 value)

MethodID: @xa9@59cbb 23
[6]: ©00000EV0OP0OO0OE0V000000618al6ed7d4c39efb5a6342c¢3972c896757a1b79
[1]: ©0060b3dC0O

Example: Solana Transactions

list of instructions (one instruction = function call + arguments)

24

Example: Solana Transactions

list of instructions (one instruction = function call + arguments)

list of accounts to be accessed
— read vs. read-write access, whether or not signature is required

25

Example: Solana Transactions

list of instructions (one instruction = function call + arguments)

list of accounts to be accessed
— read vs. read-write access, whether or not signature is required

any signatures required
priority fee (paid per-VM-instruction, on top of “base fee”)

26

Example: Solana Transactions

list of instructions (one instruction = function call + arguments)

list of accounts to be accessed
— read vs. read-write access, whether or not signature is required

any signatures required

priority fee (paid per-VM-instruction, on top of “base fee")
timestamp (for replay attack protection)

— for tx to be valid, must have recent timestamp + not be a duplicate

27

Signature () 24GQPNtGKpE4G]7dKpZKR2f rMW1YVKyTaFbsofTo2HTvwZ8c2dXvVUnNab8puja7Y8KzUmpqlHImFYsPfEpsitbd

Result Success

Timestamp Feb 19, 2025 at ©5:19:07 Eastern Standard Time

Confirmation Status FINALIZED

Confirmations
]

Recent Blockhash @ BJPWZH6Lo4CXe8pwV3ErXphqcfGakitcQPhhKUu3Ve2M

Fee (SOL) ©0.000040001

Compute units consumed

#1 Compute Budget Program Instruction Collapse

Program

Instruction Data © 02 30 57 @5 00

Compute Budget Program Instruction Expand

Associated Token Program Instruction Expand

Associated Token Program Instruction Expand

System Program Instruction Expand

Token Program Instruction

Unknown Program (PhoeNiXZ8ByJGLkxNfZRnkUfjvmuYqLR89jjFHGqdXY) Instruction Expand

Token Program Instruction Expand

Account List (14)

Account #1

Signer

Account #2

Account #3

Account #4

Account #5

Account #6

Account #7

Account #8

Account #9

Account #10

Account #11

Account #12

Account #13

Account #14

Collapse

Mental Model for General Transactions

Special case: In Ethereum, an EOA - EOA transaction
(necessarily an ETH transfer) processed “natively.”

— Just modify the balances of the two EOA accounts directly
— = processed directly by “operating system,” not a “program”

29

Mental Model for General Transactions

Special case: In Ethereum, an EOA - EOA transaction
(necessarily an ETH transfer) processed “natively.”

— Just modify the balances of the two EOA accounts directly
— = processed directly by “operating system,” not a “program”

— In Solana, SOL transfers still involve a function call (to a “pre-
installed” program)

30

Mental Model for General Transactions

General transaction: can trigger arbitrary code.

31

Mental Model for General Transactions

General transaction: can trigger arbitrary code.

Analogy: Java and the Java Virtual Machine (JVM).
— contracts/programs = objects, reactive to function calls
— example: crowdfunding a la Kickstarter

32

Mental Model for General Transactions

General transaction: can trigger arbitrary code.

Analogy: Java and the Java Virtual Machine (JVM).
— contracts/programs = objects, reactive to function calls
— example: crowdfunding a la Kickstarter

- Step 1: developers write (high-level) Java code.

33

Mental Model for General Transactions

class GoodArithmetic {
byte addOneAndOne() {
byte a = 1;

byte b = 1;
byte ¢ = (byte) (a + b);
return c;

34

Mental Model for General Transactions

General transaction: can trigger arbitrary code.

Analogy: Java and the Java Virtual Machine (JVM).
— contracts/programs = objects, reactive to function calls
— example: crowdfunding a la Kickstarter

- Step 1: developers write (high-level) Java code.

« Step 2: Java code compiled down to bytecode.
— lower-level, but still hardware-independent

35

Mental Model for General Transactions

iconst_1

istore_1
iconst_1
istore_2
iload_1
iload_2
iadd
int2byte
istore_3
iload_3
ireturn

/
/7
/7
/7
//
//
//
/7
/7
/7
/7

class GoodArithmetic {
byte addOneAndOne() {
byte a = 1;
byte b = 1;
byte ¢ (byte) (a +
return c;

/ Push int constant 1.

Pop into local variable 1, which is a: byte a

Push int constant 1 again.

Pop into local variable 2, which is b: byte b

b);

ILg

g

Push a (a is already stored as an int in local variable 1).

Push b (b is already stored as an int in local variable 2).

Perform addition. Top of stack is now (a + b),

an int.

Convert int result to byte (result still occupies 32 bits).

Pop into local variable 3, which is byte c:
Push the value of ¢ so it can be returned.
Proudly return the result of the addition:

byte ¢ =

return c;

(byte)

(a + b);

36

Mental Model for General Transactions

General transaction: can trigger arbitrary code.

Analogy: Java and the Java Virtual Machine (JVM).
— contracts/programs = objects, reactive to function calls
— example: crowdfunding a la Kickstarter

- Step 1: developers write (high-level) Java code.
« Step 2: Java code compiled down to bytecode.
— lower-level, but still hardware-independent

« Step 3: (optional) compilation of bytecode to (hardware-
dependent) machine code. [hybrid: JIT compilation at runtime]

37

Mental Model for General Transactions

IMM RO, 0x80

class GoodArithmetic { LOAD RO, R@
IMM R1 Px84
byte addOneAndOne() { LOAD R1, R
_ . IMM R2 0x0
i oo o
- N X
byte b = 1; IMM R5, ox1
byte ¢ = (byte) (a + b); STORE RO, R2
ADD RO, R@, R3
return c; ADD R4, R4, R5
y BNE 0x20, R4, Rl
+
Ox 60 00 00 890
Ox A4 00 00 00
iconst_1 // Push int constant 1. gx 22 g% g? gg
: ‘ . ‘ . . o X
%store_l // Pop lhtO local varlablell, which is a: byte a = 1; ox 60 02 00 00
iconst_1 // Push int constant 1 again. Ox 60 03 00 04
istore_2 // Pop into local variable 2, which is b: byte b = 1; Ox 60 04 00 00
iload_1 // Push a (a is already stored as an int in local variable 1). gi gg gg gg g%
iload_2 // Push b (b is already stored as an int in local variable 2). 0x 20 00 00 @3
iadd // Perform addition. Top of stack is now (a + b), an int. Ox 20 04 04 05
int2byte // Convert int result to byte (result still occupies 32 bits). 0x 11 20 04 01
istore_3 // Pop into local variable 3, which is byte c: byte ¢ = (byte) (a + b);
iload_3 // Push the value of ¢ so it can be returned.
ireturn // Proudly return the result of the addition: return c;

38

Example: Transactions in Ethereum

General transaction: can trigger arbitrary code.

39

Example: Transactions in Ethereum

General transaction: can trigger arbitrary code.

Step 1: developers write (high-level) Solidity code.
— Solidity developed specifically for Ethereum

40

Example: Transactions in Ethereum

contract ERC20Token {
string public name;
string public symbol;
uint8 public decimals = 18;
uint256 public totalSupply;

mapping(address => uint256) public balanceOf;
mapping(address => mapping(address => uint256)) public allowance;

event Transfer(address indexed from, address indexed to, uint256 value);
event Approval(address indexed owner, address indexed spender, uint256 value);

constructor(uint256 initialSupply, string memory tokenName, string memory tokenSymbol) {
totalSupply = initialSupply * 10 *x uint256(decimals);
balanceOf [msg.sender] = totalSupply;
name = tokenName;
symbol = tokenSymbol;

// Additional functions...

41

Example: Transactions in Ethereum

General transaction: can trigger arbitrary code.

Step 1: developers write (high-level) Solidity code.
— Solidity developed specifically for Ethereum

Step 2: Solidity code compiled down to EVM bytecode.
— stack-based, like JVM bytecode

42

Example: Transactions in Ethereum

General transaction: can trigger arbitrary code.

Step 1: developers write (high-level) Solidity code.
— Solidity developed specifically for Ethereum

Step 2: Solidity code compiled down to EVM bytecode.
— stack-based, like JVM bytecode

PUSH1 0Ox60 PUSH1 0x40 MSTORE PUSH1 0x18 PUSH1 Ox0@ SSTORE CALLVALUE
ISZERO PUSH1 0x13 JUMPI PUSH1 0x0 DUP1 REVERT JUMPDEST JUMPDEST PUSH1
Ox36 DUP1 PUSH1 0Ox21 PUSH1 Ox0 CODECOPY PUSH1 0x0 RETURN STOP PUSH1
Ox60 PUSH1 0x40 MSTORE JUMPDEST PUSH1 0x0 DUP1 REVERT STOP LOG1l PUSH6
Ox627A7TAT23058 KECCAK256 SLT 0xc9 Oxbd STOP ISZERO Ox2f LOGl Oxc4

DUP1 0xf6 DUP3 PUSH32
Ox81515BB19C3E63BF7ED9FFBB5FDAO265983AC798002900000000000000000000

43

Example: Transactions in Ethereum

General transaction: can trigger arbitrary code.

Step 1: developers write (high-level) Solidity code.
— Solidity developed specifically for Ethereum

Step 2: Solidity code compiled down to EVM bytecode.

At runtime: in response to a transaction’s function call:

44

Example: Transactions in Ethereum

General transaction: can trigger arbitrary code.

Step 1: developers write (high-level) Solidity code.
— Solidity developed specifically for Ethereum

Step 2: Solidity code compiled down to EVM bytecode.

At runtime: in response to a transaction’s function call:
— validator loads relevant bytecode into read-only memory
— allocates program counter (PC), stack memory, heap memory
— carries out bytecode instructions 1-by-1
— updates local memory and Ethereum’s global state as needed

45

Example: Transactions in Solana

Step 1: developers write high-level code (usually Rust).

:scell::RefCell;

::collections :: hash_map:: DefaultHasher;
:scollections :: HashSet;

:: fmt :: Display;

:: hash :: Hasher;

2 FC::RC;

jeRef<T> = Rc<RefCell<Node<T>>>;

1st<T> {

head: <NodeRef<T>,

de<T> {

T,
<NodeRef<T>>,
<NodeRef<T>,

ter<T> {
<NodeRef<T>>,

<T> Node<T> {

tail(node: &NodeRef<T>) = <NodeRef<T> {

Some(cur) = node.borrow().next.as_ref().cloned() {
Node :: tail(&cur.clone());

}

Some(node.clone())

46

Example: Transactions in Solana

Step 1: developers write high-level code (usually Rust).

Step 2: High-level code compiled down to Solana bytecode.
* minor variant of eBPF bytecode [register-based virtual machine]

00000000000000c8 <LBBO_2>

47

Example: Transactions in Solana

Step 1: developers write high-level code (usually Rust).

Step 2: High-level code compiled down to Solana bytecode.
* minor variant of eBPF bytecode [register-based virtual machine]

At runtime: in response to a transaction’s function call:

« validator executes corresponding Solana bytecode
— either in software or via JIT compilation to machine code

48

Example: Transactions in Solana

Step 1: developers write high-level code (usually Rust).

Step 2: High-level code compiled down to Solana bytecode.
* minor variant of eBPF bytecode [register-based virtual machine]

At runtime: in response to a transaction’s function call:

« validator executes corresponding Solana bytecode
— either in software or via JIT compilation to machine code

Atomic transactions: (also in Ethereum) If transaction falls to
complete, gets rolled back. (i.e., as if never executed)

49

Metering Computation

Question: If programs can be arbitrary code, what about the
halting problem? [could a tx force an infinite loop in the VM?]

30

Metering Computation

Question: If programs can be arbitrary code, what about the
halting problem? [could a tx force an infinite loop in the VM?]

Solution: associate a cost with each VM instruction, paid by user.

ol

Metering Computation

Question: If programs can be arbitrary code, what about the
halting problem? [could a tx force an infinite loop in the VM?]

Solution: associate a cost with each VM instruction, paid by user.

Example: in Ethereum:

52

Metering Computation

Question: If programs can be arbitrary code, what about the
halting problem? [could a tx force an infinite loop in the VM?]

Solution: associate a cost with each VM instruction, paid by user.

Example: in Ethereum:

« associate an amount of “gas” with each EVM opcode
— EVM opcodes = instruction set for VM code in Ethereum’s VM
— add two numbers = 3 units of gas; evaluate SHA-256 = 30 units

53

Metering Computation

Question: If programs can be arbitrary code, what about the
halting problem? [could a tx force an infinite loop in the VM?]

Solution: associate a cost with each VM instruction, paid by user.

Example: in Ethereum:

« associate an amount of “gas” with each EVM opcode
— EVM opcodes = instruction set for VM code in Ethereum’s VM
— add two numbers = 3 units of gas; evaluate SHA-256 = 30 units

« user prepays for gas (recall “gas limit” and “gas price” fields)
* run out of gas mid-execution = tx aborted and rolled back s

	Slide 1: Lecture #9: Accounts, Gas, and Virtual Machines
	Slide 2: The Execution Layer
	Slide 3: A Cartoon of Web3 (Refined)
	Slide 4: Goals for Lecture #9
	Slide 5: How to Think About the Execution Layer
	Slide 6: How to Think About the Execution Layer
	Slide 7: How to Think About the Execution Layer
	Slide 8: Account-Based Execution Layers
	Slide 9: Account-Based Execution Layers
	Slide 10: Account-Based Execution Layers
	Slide 11: Account-Based Execution Layers
	Slide 12: Account-Based Execution Layers
	Slide 13: Account-Based Execution Layers
	Slide 14: Account-Based Execution Layers
	Slide 15: Transactions
	Slide 16: Transactions
	Slide 17: Transactions
	Slide 18: Example: Ethereum Transactions
	Slide 19: Example: Ethereum Transactions
	Slide 20: Example: Ethereum Transactions
	Slide 21: Example: Ethereum Transactions
	Slide 22: Example: Ethereum Transactions
	Slide 23: Example: USDC Transfer
	Slide 24: Example: Solana Transactions
	Slide 25: Example: Solana Transactions
	Slide 26: Example: Solana Transactions
	Slide 27: Example: Solana Transactions
	Slide 28
	Slide 29: Mental Model for General Transactions
	Slide 30: Mental Model for General Transactions
	Slide 31: Mental Model for General Transactions
	Slide 32: Mental Model for General Transactions
	Slide 33: Mental Model for General Transactions
	Slide 34: Mental Model for General Transactions
	Slide 35: Mental Model for General Transactions
	Slide 36: Mental Model for General Transactions
	Slide 37: Mental Model for General Transactions
	Slide 38: Mental Model for General Transactions
	Slide 39: Example: Transactions in Ethereum
	Slide 40: Example: Transactions in Ethereum
	Slide 41: Example: Transactions in Ethereum
	Slide 42: Example: Transactions in Ethereum
	Slide 43: Example: Transactions in Ethereum
	Slide 44: Example: Transactions in Ethereum
	Slide 45: Example: Transactions in Ethereum
	Slide 46: Example: Transactions in Solana
	Slide 47: Example: Transactions in Solana
	Slide 48: Example: Transactions in Solana
	Slide 49: Example: Transactions in Solana
	Slide 50: Metering Computation
	Slide 51: Metering Computation
	Slide 52: Metering Computation
	Slide 53: Metering Computation
	Slide 54: Metering Computation

