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The Execution Layer
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[replicated at each physical 
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consensus transaction sequence

Execution layer: keep state of the virtual machine up-to-date.



Blockchain protocol:

• like an operating system, a blockchain protocol:

– acts as a “master program” to coordinate all apps/smart contracts

– provides a virtual machine to developers of applications

• “decentralized” like the Internet 3

A Cartoon of Web3 (Refined)

applications/smart contracts

execution layer/virtual machine

Internet

user

consensus layer

blockchain 

protocol



1. The account-base model (used in Ethereum, Solana, etc.).

– explicit notion of account IDs and balances, programs as accounts

2. Transactions. 

– high-level: the basic unit of user intent

– low-level: a snippet of VM code

3. Virtual machines. 

– how to execute transactions with arbitrary code

4. Metering computation.
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Goals for Lecture #9



Questions: what are the possible “states” of the virtual machine?

• how are transactions described (both high-level and low-level)?

• what state transition results from executing a transaction?

• how does a validator represent state and carry out transitions?
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How to Think About the Execution Layer



Questions: what are the possible “states” of the virtual machine?

• how are transactions described (both high-level and low-level)?

• what state transition results from executing a transaction?

• how does a validator represent state and carry out transitions?

Note: will now treat the consensus layer as a “black box,” 

consider a single validator processing a transaction sequence.

– separation between consensus and execution varies with protocol 
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How to Think About the Execution Layer



Questions: what are the possible “states” of the virtual machine?

• how are transactions described (both high-level and low-level)?

• what state transition results from executing a transaction?

• how does a validator represent state and carry out transitions?

Note: will now treat the consensus layer as a “black box,” 

consider a single validator processing a transaction sequence.

– separation between consensus and execution varies with protocol 

Next: account-based general-purpose execution layers.
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How to Think About the Execution Layer



Examples: Ethereum, Solana, Move (Diem/Aptos/Sui), etc.
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Account-Based Execution Layers



Examples: Ethereum, Solana, Move (Diem/Aptos/Sui), etc.

Idea: “state” of an account-based protocol specified by:

• a set of current accounts (indexed by accountID, e.g. a pk)

– generally, an account could correspond to a user or a program/contract
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Account-Based Execution Layers



Examples: Ethereum, Solana, Move (Diem/Aptos/Sui), etc.

Idea: “state” of an account-based protocol specified by:

• a set of current accounts (indexed by accountID, e.g. a pk)

– generally, an account could correspond to a user or a program/contract

• the state of each of these accounts, which could include:

– balance in native cryptocurrency (ETH, SOL, etc.)

• contracts can also have non-zero balances 

– arbitrary persistent and mutable data

– VM code a.k.a. bytecode (typically immutable)
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Account-Based Execution Layers



Idea: “state” of an account-based protocol specified by:

• a set of current accounts (indexed by accountID, e.g. a pk)

• the state of each of these accounts, which could include:

– e.g., balance, data, and or bytecode
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Account-Based Execution Layers



Idea: “state” of an account-based protocol specified by:

• a set of current accounts (indexed by accountID, e.g. a pk)

• the state of each of these accounts, which could include:

– e.g., balance, data, and or bytecode

Example: Ethereum.

• distinguish user accounts (“EOAs”) vs. contract accounts

– EOA ➔ no data, no code

– contract account ➔ both data and code (e.g., NFT contract)
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Account-Based Execution Layers



Idea: “state” of an account-based protocol specified by:

• a set of current accounts (indexed by accountID, e.g. a pk)

• the state of each of these accounts, which could include:

– e.g., balance, data, and or bytecode

Examples: Ethereum vs. Solana.

• Ethereum: distinguish user accounts vs. contract accounts

– EOA ➔ no data, no code; contract account ➔ both data and code

• Solana: distinction between user vs. program accounts blurrier, 

program code and data stored in separate accounts
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Account-Based Execution Layers



Idea: “state” of an account-based protocol specified by:

• a set of current accounts (indexed by accountID, e.g. a pk)

• the state of each of these accounts, which could include:

– e.g., balance, data, and or bytecode

Examples: Ethereum vs. Solana.

Note: protocol does not fully prescribe how to represent state. 

– e.g., multiple execution clients in Ethereum, differ in many details

– in practice, state typically includes metadata that strongly encourages a 

particular implementation (e.g., Merkle trees, see next week)
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Account-Based Execution Layers



Basic ingredients:
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Transactions



Basic ingredients:

• a function call (to some contract, with some arguments)

• any necessary signatures

• priority fee

– to encourage validators to include this transaction over others
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Transactions



Basic ingredients:

• a function call (to some contract, with some arguments)

• any necessary signatures

• priority fee

– to encourage validators to include this transaction over others

Extras:

• information about resources required by transaction

• defense against replay attacks
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Transactions



• each transaction sent by a single EOA (i.e., only one signer)

• signature by sender required

– can back out sender’s public key (+ hence accountID) from signature
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Example: Ethereum Transactions



• each transaction sent by a single EOA (i.e., only one signer)

• signature by sender required

– can back out sender’s public key (+ hence accountID) from signature

• recipient (EOA or contract account, specified by accountID)
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Example: Ethereum Transactions



• each transaction sent by a single EOA (i.e., only one signer)

• signature by sender required

– can back out sender’s public key (+ hence accountID) from signature

• recipient (EOA or contract account, specified by accountID)

• value (in ETH)

• data (e.g., function call + arguments)
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Example: Ethereum Transactions



• each transaction sent by a single EOA (i.e., only one signer)

• signature by sender required

– can back out sender’s public key (+ hence accountID) from signature

• recipient (EOA or contract account, specified by accountID)

• value (in ETH)

• data (e.g., function call + arguments)

• “gas limit” (computation required by transaction (≈ “size”))

• “gas price” (priority fee to be paid per-unit-gas)
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Example: Ethereum Transactions



• each transaction sent by a single EOA (i.e., only one signer)

• signature by sender required

– can back out sender’s public key (+ hence accountID) from signature

• recipient (EOA or contract account, specified by accountID)

• value (in ETH)

• data (e.g., function call + arguments)

• “gas limit” (computation required by transaction (≈ “size”))

• “gas price” (priority fee to be paid per-unit-gas)

• nonce (for replay attack protection)

– for tx to be valid, needs to match nonce in sender’s account
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Example: Ethereum Transactions
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Example: 

USDC Transfer



• list of instructions (one instruction ≈ function call + arguments)
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Example: Solana Transactions



• list of instructions (one instruction ≈ function call + arguments)

• list of accounts to be accessed

– read vs. read-write access, whether or not signature is required
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Example: Solana Transactions



• list of instructions (one instruction ≈ function call + arguments)

• list of accounts to be accessed

– read vs. read-write access, whether or not signature is required

• any signatures required

• priority fee (paid per-VM-instruction, on top of “base fee”)
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Example: Solana Transactions



• list of instructions (one instruction ≈ function call + arguments)

• list of accounts to be accessed

– read vs. read-write access, whether or not signature is required

• any signatures required

• priority fee (paid per-VM-instruction, on top of “base fee”)

• timestamp (for replay attack protection)

– for tx to be valid, must have recent timestamp + not be a duplicate
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Example: Solana Transactions
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Special case: in Ethereum, an EOA → EOA transaction 

(necessarily an ETH transfer) processed “natively.”

– just modify the balances of the two EOA accounts directly

– ≈ processed directly by “operating system,” not a “program”
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Mental Model for General Transactions



Special case: in Ethereum, an EOA → EOA transaction 

(necessarily an ETH transfer) processed “natively.”

– just modify the balances of the two EOA accounts directly

– ≈ processed directly by “operating system,” not a “program”

– in Solana, SOL transfers still involve a function call (to a “pre-

installed” program)

30

Mental Model for General Transactions



General transaction: can trigger arbitrary code.
»   
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Mental Model for General Transactions



General transaction: can trigger arbitrary code.
»   

Analogy: Java and the Java Virtual Machine (JVM).

– contracts/programs ≈ objects, reactive to function calls

– example: crowdfunding a la Kickstarter
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Mental Model for General Transactions



General transaction: can trigger arbitrary code.
»   

Analogy: Java and the Java Virtual Machine (JVM).

– contracts/programs ≈ objects, reactive to function calls

– example: crowdfunding a la Kickstarter

• Step 1: developers write (high-level) Java code.
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Mental Model for General Transactions
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Mental Model for General Transactions



General transaction: can trigger arbitrary code.
»   

Analogy: Java and the Java Virtual Machine (JVM).

– contracts/programs ≈ objects, reactive to function calls

– example: crowdfunding a la Kickstarter

• Step 1: developers write (high-level) Java code.

• Step 2: Java code compiled down to bytecode.

– lower-level, but still hardware-independent
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Mental Model for General Transactions
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Mental Model for General Transactions



General transaction: can trigger arbitrary code.
»   

Analogy: Java and the Java Virtual Machine (JVM).

– contracts/programs ≈ objects, reactive to function calls

– example: crowdfunding a la Kickstarter

• Step 1: developers write (high-level) Java code.

• Step 2: Java code compiled down to bytecode.

– lower-level, but still hardware-independent

• Step 3: (optional) compilation of bytecode to (hardware-

dependent) machine code. [hybrid: JIT compilation at runtime]
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Mental Model for General Transactions
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Mental Model for General Transactions



General transaction: can trigger arbitrary code.
»   
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Example: Transactions in Ethereum



General transaction: can trigger arbitrary code.
»   

Step 1: developers write (high-level) Solidity code.

– Solidity developed specifically for Ethereum
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Example: Transactions in Ethereum
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Example: Transactions in Ethereum



General transaction: can trigger arbitrary code.
»   

Step 1: developers write (high-level) Solidity code.

– Solidity developed specifically for Ethereum

Step 2: Solidity code compiled down to EVM bytecode.

– stack-based, like JVM bytecode
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Example: Transactions in Ethereum



General transaction: can trigger arbitrary code.
»   

Step 1: developers write (high-level) Solidity code.

– Solidity developed specifically for Ethereum

Step 2: Solidity code compiled down to EVM bytecode.

– stack-based, like JVM bytecode
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Example: Transactions in Ethereum



General transaction: can trigger arbitrary code.
»   

Step 1: developers write (high-level) Solidity code.

– Solidity developed specifically for Ethereum

Step 2: Solidity code compiled down to EVM bytecode.

At runtime: in response to a transaction’s function call:
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Example: Transactions in Ethereum



General transaction: can trigger arbitrary code.
»   

Step 1: developers write (high-level) Solidity code.

– Solidity developed specifically for Ethereum

Step 2: Solidity code compiled down to EVM bytecode.

At runtime: in response to a transaction’s function call:

– validator loads relevant bytecode into read-only memory

– allocates program counter (PC), stack memory, heap memory

– carries out bytecode instructions 1-by-1

– updates local memory and Ethereum’s global state as needed 45

Example: Transactions in Ethereum



Step 1: developers write high-level code (usually Rust).
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Example: Transactions in Solana



Step 1: developers write high-level code (usually Rust).

Step 2: High-level code compiled down to Solana bytecode.

• minor variant of eBPF bytecode [register-based virtual machine]
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Example: Transactions in Solana



Step 1: developers write high-level code (usually Rust).

Step 2: High-level code compiled down to Solana bytecode.

• minor variant of eBPF bytecode [register-based virtual machine]

At runtime: in response to a transaction’s function call:

• validator executes corresponding Solana bytecode

– either in software or via JIT compilation to machine code

48

Example: Transactions in Solana



Step 1: developers write high-level code (usually Rust).

Step 2: High-level code compiled down to Solana bytecode.

• minor variant of eBPF bytecode [register-based virtual machine]

At runtime: in response to a transaction’s function call:

• validator executes corresponding Solana bytecode

– either in software or via JIT compilation to machine code

Atomic transactions: (also in Ethereum) if transaction fails to 

complete, gets rolled back.  (i.e., as if never executed)
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Example: Transactions in Solana



Question: if programs can be arbitrary code, what about the 

halting problem?  [could a tx force an infinite loop in the VM?]
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Metering Computation



Question: if programs can be arbitrary code, what about the 

halting problem?  [could a tx force an infinite loop in the VM?]

Solution: associate a cost with each VM instruction, paid by user.
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Metering Computation



Question: if programs can be arbitrary code, what about the 

halting problem?  [could a tx force an infinite loop in the VM?]

Solution: associate a cost with each VM instruction, paid by user.

Example: in Ethereum:
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Metering Computation



Question: if programs can be arbitrary code, what about the 

halting problem?  [could a tx force an infinite loop in the VM?]

Solution: associate a cost with each VM instruction, paid by user.

Example: in Ethereum:

• associate an amount of “gas” with each EVM opcode

– EVM opcodes = instruction set for VM code in Ethereum’s VM

– add two numbers = 3 units of gas; evaluate SHA-256 = 30 units
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Metering Computation



Question: if programs can be arbitrary code, what about the 

halting problem?  [could a tx force an infinite loop in the VM?]

Solution: associate a cost with each VM instruction, paid by user.

Example: in Ethereum:

• associate an amount of “gas” with each EVM opcode

– EVM opcodes = instruction set for VM code in Ethereum’s VM

– add two numbers = 3 units of gas; evaluate SHA-256 = 30 units

• user prepays for gas (recall “gas limit” and “gas price” fields)

• run out of gas mid-execution ➔ tx aborted and rolled back 54

Metering Computation
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