
Lecture #9: Accounts, Gas, and

Virtual Machines

Tim Roughgarden

COMS 4995-001:

The Science of Blockchains
URL: https://timroughgarden.org/s25/

2

The Execution Layer

blockchain protocol

(execution layer)

[replicated at each

physical machine]

tx2 tx3 tx1 tx4

simulated (virtual) computer

[replicated at each physical

machine]

consensus transaction sequence

Execution layer: keep state of the virtual machine up-to-date.

Blockchain protocol:

• like an operating system, a blockchain protocol:

– acts as a “master program” to coordinate all apps/smart contracts

– provides a virtual machine to developers of applications

• “decentralized” like the Internet 3

A Cartoon of Web3 (Refined)

applications/smart contracts

execution layer/virtual machine

Internet

user

consensus layer

blockchain

protocol

1. The account-base model (used in Ethereum, Solana, etc.).

– explicit notion of account IDs and balances, programs as accounts

2. Transactions.

– high-level: the basic unit of user intent

– low-level: a snippet of VM code

3. Virtual machines.

– how to execute transactions with arbitrary code

4. Metering computation.
4

Goals for Lecture #9

Questions: what are the possible “states” of the virtual machine?

• how are transactions described (both high-level and low-level)?

• what state transition results from executing a transaction?

• how does a validator represent state and carry out transitions?

5

How to Think About the Execution Layer

Questions: what are the possible “states” of the virtual machine?

• how are transactions described (both high-level and low-level)?

• what state transition results from executing a transaction?

• how does a validator represent state and carry out transitions?

Note: will now treat the consensus layer as a “black box,”

consider a single validator processing a transaction sequence.

– separation between consensus and execution varies with protocol

6

How to Think About the Execution Layer

Questions: what are the possible “states” of the virtual machine?

• how are transactions described (both high-level and low-level)?

• what state transition results from executing a transaction?

• how does a validator represent state and carry out transitions?

Note: will now treat the consensus layer as a “black box,”

consider a single validator processing a transaction sequence.

– separation between consensus and execution varies with protocol

Next: account-based general-purpose execution layers.

7

How to Think About the Execution Layer

Examples: Ethereum, Solana, Move (Diem/Aptos/Sui), etc.

8

Account-Based Execution Layers

Examples: Ethereum, Solana, Move (Diem/Aptos/Sui), etc.

Idea: “state” of an account-based protocol specified by:

• a set of current accounts (indexed by accountID, e.g. a pk)

– generally, an account could correspond to a user or a program/contract

9

Account-Based Execution Layers

Examples: Ethereum, Solana, Move (Diem/Aptos/Sui), etc.

Idea: “state” of an account-based protocol specified by:

• a set of current accounts (indexed by accountID, e.g. a pk)

– generally, an account could correspond to a user or a program/contract

• the state of each of these accounts, which could include:

– balance in native cryptocurrency (ETH, SOL, etc.)

• contracts can also have non-zero balances

– arbitrary persistent and mutable data

– VM code a.k.a. bytecode (typically immutable)

10

Account-Based Execution Layers

Idea: “state” of an account-based protocol specified by:

• a set of current accounts (indexed by accountID, e.g. a pk)

• the state of each of these accounts, which could include:

– e.g., balance, data, and or bytecode

11

Account-Based Execution Layers

Idea: “state” of an account-based protocol specified by:

• a set of current accounts (indexed by accountID, e.g. a pk)

• the state of each of these accounts, which could include:

– e.g., balance, data, and or bytecode

Example: Ethereum.

• distinguish user accounts (“EOAs”) vs. contract accounts

– EOA ➔ no data, no code

– contract account ➔ both data and code (e.g., NFT contract)

12

Account-Based Execution Layers

Idea: “state” of an account-based protocol specified by:

• a set of current accounts (indexed by accountID, e.g. a pk)

• the state of each of these accounts, which could include:

– e.g., balance, data, and or bytecode

Examples: Ethereum vs. Solana.

• Ethereum: distinguish user accounts vs. contract accounts

– EOA ➔ no data, no code; contract account ➔ both data and code

• Solana: distinction between user vs. program accounts blurrier,

program code and data stored in separate accounts
13

Account-Based Execution Layers

Idea: “state” of an account-based protocol specified by:

• a set of current accounts (indexed by accountID, e.g. a pk)

• the state of each of these accounts, which could include:

– e.g., balance, data, and or bytecode

Examples: Ethereum vs. Solana.

Note: protocol does not fully prescribe how to represent state.

– e.g., multiple execution clients in Ethereum, differ in many details

– in practice, state typically includes metadata that strongly encourages a

particular implementation (e.g., Merkle trees, see next week)
14

Account-Based Execution Layers

Basic ingredients:

15

Transactions

Basic ingredients:

• a function call (to some contract, with some arguments)

• any necessary signatures

• priority fee

– to encourage validators to include this transaction over others

16

Transactions

Basic ingredients:

• a function call (to some contract, with some arguments)

• any necessary signatures

• priority fee

– to encourage validators to include this transaction over others

Extras:

• information about resources required by transaction

• defense against replay attacks

17

Transactions

• each transaction sent by a single EOA (i.e., only one signer)

• signature by sender required

– can back out sender’s public key (+ hence accountID) from signature

18

Example: Ethereum Transactions

• each transaction sent by a single EOA (i.e., only one signer)

• signature by sender required

– can back out sender’s public key (+ hence accountID) from signature

• recipient (EOA or contract account, specified by accountID)

19

Example: Ethereum Transactions

• each transaction sent by a single EOA (i.e., only one signer)

• signature by sender required

– can back out sender’s public key (+ hence accountID) from signature

• recipient (EOA or contract account, specified by accountID)

• value (in ETH)

• data (e.g., function call + arguments)

20

Example: Ethereum Transactions

• each transaction sent by a single EOA (i.e., only one signer)

• signature by sender required

– can back out sender’s public key (+ hence accountID) from signature

• recipient (EOA or contract account, specified by accountID)

• value (in ETH)

• data (e.g., function call + arguments)

• “gas limit” (computation required by transaction (≈ “size”))

• “gas price” (priority fee to be paid per-unit-gas)

21

Example: Ethereum Transactions

• each transaction sent by a single EOA (i.e., only one signer)

• signature by sender required

– can back out sender’s public key (+ hence accountID) from signature

• recipient (EOA or contract account, specified by accountID)

• value (in ETH)

• data (e.g., function call + arguments)

• “gas limit” (computation required by transaction (≈ “size”))

• “gas price” (priority fee to be paid per-unit-gas)

• nonce (for replay attack protection)

– for tx to be valid, needs to match nonce in sender’s account
22

Example: Ethereum Transactions

23

Example:

USDC Transfer

• list of instructions (one instruction ≈ function call + arguments)

24

Example: Solana Transactions

• list of instructions (one instruction ≈ function call + arguments)

• list of accounts to be accessed

– read vs. read-write access, whether or not signature is required

25

Example: Solana Transactions

• list of instructions (one instruction ≈ function call + arguments)

• list of accounts to be accessed

– read vs. read-write access, whether or not signature is required

• any signatures required

• priority fee (paid per-VM-instruction, on top of “base fee”)

26

Example: Solana Transactions

• list of instructions (one instruction ≈ function call + arguments)

• list of accounts to be accessed

– read vs. read-write access, whether or not signature is required

• any signatures required

• priority fee (paid per-VM-instruction, on top of “base fee”)

• timestamp (for replay attack protection)

– for tx to be valid, must have recent timestamp + not be a duplicate

27

Example: Solana Transactions

28

Special case: in Ethereum, an EOA → EOA transaction

(necessarily an ETH transfer) processed “natively.”

– just modify the balances of the two EOA accounts directly

– ≈ processed directly by “operating system,” not a “program”

29

Mental Model for General Transactions

Special case: in Ethereum, an EOA → EOA transaction

(necessarily an ETH transfer) processed “natively.”

– just modify the balances of the two EOA accounts directly

– ≈ processed directly by “operating system,” not a “program”

– in Solana, SOL transfers still involve a function call (to a “pre-

installed” program)

30

Mental Model for General Transactions

General transaction: can trigger arbitrary code.
»

31

Mental Model for General Transactions

General transaction: can trigger arbitrary code.
»

Analogy: Java and the Java Virtual Machine (JVM).

– contracts/programs ≈ objects, reactive to function calls

– example: crowdfunding a la Kickstarter

32

Mental Model for General Transactions

General transaction: can trigger arbitrary code.
»

Analogy: Java and the Java Virtual Machine (JVM).

– contracts/programs ≈ objects, reactive to function calls

– example: crowdfunding a la Kickstarter

• Step 1: developers write (high-level) Java code.

33

Mental Model for General Transactions

34

Mental Model for General Transactions

General transaction: can trigger arbitrary code.
»

Analogy: Java and the Java Virtual Machine (JVM).

– contracts/programs ≈ objects, reactive to function calls

– example: crowdfunding a la Kickstarter

• Step 1: developers write (high-level) Java code.

• Step 2: Java code compiled down to bytecode.

– lower-level, but still hardware-independent

35

Mental Model for General Transactions

36

Mental Model for General Transactions

General transaction: can trigger arbitrary code.
»

Analogy: Java and the Java Virtual Machine (JVM).

– contracts/programs ≈ objects, reactive to function calls

– example: crowdfunding a la Kickstarter

• Step 1: developers write (high-level) Java code.

• Step 2: Java code compiled down to bytecode.

– lower-level, but still hardware-independent

• Step 3: (optional) compilation of bytecode to (hardware-

dependent) machine code. [hybrid: JIT compilation at runtime]
37

Mental Model for General Transactions

38

Mental Model for General Transactions

General transaction: can trigger arbitrary code.
»

39

Example: Transactions in Ethereum

General transaction: can trigger arbitrary code.
»

Step 1: developers write (high-level) Solidity code.

– Solidity developed specifically for Ethereum

40

Example: Transactions in Ethereum

41

Example: Transactions in Ethereum

General transaction: can trigger arbitrary code.
»

Step 1: developers write (high-level) Solidity code.

– Solidity developed specifically for Ethereum

Step 2: Solidity code compiled down to EVM bytecode.

– stack-based, like JVM bytecode

42

Example: Transactions in Ethereum

General transaction: can trigger arbitrary code.
»

Step 1: developers write (high-level) Solidity code.

– Solidity developed specifically for Ethereum

Step 2: Solidity code compiled down to EVM bytecode.

– stack-based, like JVM bytecode

43

Example: Transactions in Ethereum

General transaction: can trigger arbitrary code.
»

Step 1: developers write (high-level) Solidity code.

– Solidity developed specifically for Ethereum

Step 2: Solidity code compiled down to EVM bytecode.

At runtime: in response to a transaction’s function call:

44

Example: Transactions in Ethereum

General transaction: can trigger arbitrary code.
»

Step 1: developers write (high-level) Solidity code.

– Solidity developed specifically for Ethereum

Step 2: Solidity code compiled down to EVM bytecode.

At runtime: in response to a transaction’s function call:

– validator loads relevant bytecode into read-only memory

– allocates program counter (PC), stack memory, heap memory

– carries out bytecode instructions 1-by-1

– updates local memory and Ethereum’s global state as needed 45

Example: Transactions in Ethereum

Step 1: developers write high-level code (usually Rust).

46

Example: Transactions in Solana

Step 1: developers write high-level code (usually Rust).

Step 2: High-level code compiled down to Solana bytecode.

• minor variant of eBPF bytecode [register-based virtual machine]

47

Example: Transactions in Solana

Step 1: developers write high-level code (usually Rust).

Step 2: High-level code compiled down to Solana bytecode.

• minor variant of eBPF bytecode [register-based virtual machine]

At runtime: in response to a transaction’s function call:

• validator executes corresponding Solana bytecode

– either in software or via JIT compilation to machine code

48

Example: Transactions in Solana

Step 1: developers write high-level code (usually Rust).

Step 2: High-level code compiled down to Solana bytecode.

• minor variant of eBPF bytecode [register-based virtual machine]

At runtime: in response to a transaction’s function call:

• validator executes corresponding Solana bytecode

– either in software or via JIT compilation to machine code

Atomic transactions: (also in Ethereum) if transaction fails to

complete, gets rolled back. (i.e., as if never executed)
49

Example: Transactions in Solana

Question: if programs can be arbitrary code, what about the

halting problem? [could a tx force an infinite loop in the VM?]

50

Metering Computation

Question: if programs can be arbitrary code, what about the

halting problem? [could a tx force an infinite loop in the VM?]

Solution: associate a cost with each VM instruction, paid by user.

51

Metering Computation

Question: if programs can be arbitrary code, what about the

halting problem? [could a tx force an infinite loop in the VM?]

Solution: associate a cost with each VM instruction, paid by user.

Example: in Ethereum:

52

Metering Computation

Question: if programs can be arbitrary code, what about the

halting problem? [could a tx force an infinite loop in the VM?]

Solution: associate a cost with each VM instruction, paid by user.

Example: in Ethereum:

• associate an amount of “gas” with each EVM opcode

– EVM opcodes = instruction set for VM code in Ethereum’s VM

– add two numbers = 3 units of gas; evaluate SHA-256 = 30 units

53

Metering Computation

Question: if programs can be arbitrary code, what about the

halting problem? [could a tx force an infinite loop in the VM?]

Solution: associate a cost with each VM instruction, paid by user.

Example: in Ethereum:

• associate an amount of “gas” with each EVM opcode

– EVM opcodes = instruction set for VM code in Ethereum’s VM

– add two numbers = 3 units of gas; evaluate SHA-256 = 30 units

• user prepays for gas (recall “gas limit” and “gas price” fields)

• run out of gas mid-execution ➔ tx aborted and rolled back 54

Metering Computation

	Slide 1: Lecture #9: Accounts, Gas, and Virtual Machines
	Slide 2: The Execution Layer
	Slide 3: A Cartoon of Web3 (Refined)
	Slide 4: Goals for Lecture #9
	Slide 5: How to Think About the Execution Layer
	Slide 6: How to Think About the Execution Layer
	Slide 7: How to Think About the Execution Layer
	Slide 8: Account-Based Execution Layers
	Slide 9: Account-Based Execution Layers
	Slide 10: Account-Based Execution Layers
	Slide 11: Account-Based Execution Layers
	Slide 12: Account-Based Execution Layers
	Slide 13: Account-Based Execution Layers
	Slide 14: Account-Based Execution Layers
	Slide 15: Transactions
	Slide 16: Transactions
	Slide 17: Transactions
	Slide 18: Example: Ethereum Transactions
	Slide 19: Example: Ethereum Transactions
	Slide 20: Example: Ethereum Transactions
	Slide 21: Example: Ethereum Transactions
	Slide 22: Example: Ethereum Transactions
	Slide 23: Example: USDC Transfer
	Slide 24: Example: Solana Transactions
	Slide 25: Example: Solana Transactions
	Slide 26: Example: Solana Transactions
	Slide 27: Example: Solana Transactions
	Slide 28
	Slide 29: Mental Model for General Transactions
	Slide 30: Mental Model for General Transactions
	Slide 31: Mental Model for General Transactions
	Slide 32: Mental Model for General Transactions
	Slide 33: Mental Model for General Transactions
	Slide 34: Mental Model for General Transactions
	Slide 35: Mental Model for General Transactions
	Slide 36: Mental Model for General Transactions
	Slide 37: Mental Model for General Transactions
	Slide 38: Mental Model for General Transactions
	Slide 39: Example: Transactions in Ethereum
	Slide 40: Example: Transactions in Ethereum
	Slide 41: Example: Transactions in Ethereum
	Slide 42: Example: Transactions in Ethereum
	Slide 43: Example: Transactions in Ethereum
	Slide 44: Example: Transactions in Ethereum
	Slide 45: Example: Transactions in Ethereum
	Slide 46: Example: Transactions in Solana
	Slide 47: Example: Transactions in Solana
	Slide 48: Example: Transactions in Solana
	Slide 49: Example: Transactions in Solana
	Slide 50: Metering Computation
	Slide 51: Metering Computation
	Slide 52: Metering Computation
	Slide 53: Metering Computation
	Slide 54: Metering Computation

