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An eBay Single-Good Auction 

. 

Upshot: in an eBay auction: 

  winner = highest bidder above reserve price 
  price = max{second-highest bid, reserve} 
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Truthful Auctions 

Utility Model: bidder i has valuation vi  
  maximum willingness to pay 
  known to bidder, unknown to seller 

  utility = vi - price paid; or 0 if loses auction 
  submits bid bi to maximize its utility 

Claim: an eBay auction is truthful 
  truthful bidding (bi  = vi) is “foolproof” 
  i.e., a false bid never outperforms a true bid 
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eBay Is Truthful 

Fix player i, reserve r, other bids b-i 

Observation #1: bidder i effectively faces a                
“take-it-or-leave it" offer at a fixed price                  
p = max{reserve, highest other bid}. 

Observation #2: truthful bidding guaranteed to 
maximize utility (a "dominant strategy") 

  case 1: (v ≤ p) max utility = 0, achieved when b = v  
  case 2: (v ≥ p) max utility = v-p, achieved when b = v 
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Overarching Goals 

  want to design "optimal" truthful    mechanisms and 
auctions 
  for a wide range of problems 

  combinatorial auctions, scheduling, etc. 
  for different objectives (welfare, revenue) 
  often require polynomial running time as well 

  general design techniques, analysis frameworks 

  prove limits on what is possible  
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Why Truthful? 

  many mechanisms "in the wild" not truthful  
  sponsored search, combinatorial auctions 
  important for practical implementations 

  not clear when other mechanisms (with no dominant 
strategies) are fundamentally more powerful than truthful 
ones; sometimes have equivalence  
  e.g., "Revenue Equivalence" theorems 

  truthful mechanisms definitely a good "first-cut abstraction" 
for foundations of mechanism design 
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How Theory CS Can Contribute 

Unsurprising fact: very rich tradition and literature on mechanism 
design in economics. 

•  largely "Bayesian" (i.e., average-case) settings 
•  emphasizes exact solutions/characterizations 
•  usually ignores communication/computation 

What we have to offer: 
1.  worst-case guarantees 
2.  approximation bounds 
3.  computational complexity 
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How To Think About Algorithmic 
Mechanism Design 

Philosophy: designing truthful mechanisms boils 
down to designing algorithms in a certain 
"restricted computational model".  

Next: focus on simple class of problems where this 
point is particularly clear and well understood. 
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Single-Parameter Problems 

Outcome space: a set of vectors of the form                
(x1, x2,..., xn)   [amount of "stuff" per player] 

Utility Model: bidder i has private valuation vi             
(per unit of "stuff")  

  utility = vi xi - payment 
  submits bid bi to maximize its utility 

Examples: k-unit auction, "unit-demand" bidders; job 
scheduling on related machines 



10 

Mechanism Design Space 

The essence of any truthful mechanism (formalized via 
the "Revelation Principle"): 

  collect bid bi from each player i 
  invoke (randomized) allocation rule: bi's      xi's 

  who gets how much (expected) stuff 

  invoke (randomized) payment rule: bi's       pi's 
  and who pays what 

  truthfulness: for every i, vi, other bids, setting vi = bi  
maximizes expected utility vi xi(b) - pi(b) 



11 

Two Definitions 

Implementable Allocation Rule: is a function x (from 
bids to expected allocations) that admits a payment 
rule p such that (x,p) is truthful. 

  i.e., truthful bidding [bi:=vi] always maximizes a bidder's 
(expected) utility 
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Two Definitions 

Implementable Allocation Rule: is a function x (from 
bids to expected allocations) that admits a payment 
rule p such that (x,p) is truthful. 

  i.e., truthful bidding [bi:=vi] always maximizes a bidder's 
(expected) utility 

Monotone Allocation Rule: for every fixed bidder i, 
fixed other bids b-i, expected allocation only 
increases in the bid bi. 

  example: highest bidder wins 
  non-example: 2nd-highest bidder wins 
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Myerson's Lemma 

Myerson's Lemma: [1981; also Archer-Tardos FOCS 
01] an allocation rule x is implementable if and only 
if it is monotone. 
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Myerson's Lemma 

Myerson's Lemma: [1981; also Archer-Tardos FOCS 
01] an allocation rule x is implementable if and only 
if it is monotone. 

Moreover: for every monotone allocation rule x, there is 
a unique payment rule p such that (x,p) is truthful 
and losers always pay 0. 
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Myerson's Lemma 

Myerson's Lemma: [1981; also Archer-Tardos FOCS 
01] an allocation rule x is implementable if and only 
if it is monotone. 

Moreover: for every monotone allocation rule x, there is 
a unique payment rule p such that (x,p) is truthful 
and losers always pay 0. 

Explicit formula for pi(b):  
  keep b-i fixed, increase z from 0 to bi 
  consider breakpoints y1,...,yq at which xi jumps 
  set  pi(b) :=  Σj yj ● [jump in xi at yj] 
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Myerson's Lemma (Proof Idea) 

Proof idea: let x be an allocation rule, fix i and b-i.  
Write x(z), p(z) for xi(z, b-i), pi(z, b-i). 

  apply purported truthfulness of  (x,p) to two 
scenarios: true value = z, false bid = z + ε and true 
value = z + ε, false bid = z 

  take ε to zero get 
  p'(z) = z ◦ x'(z)    [if x differentiable at z] or 
  jump in p at z = z ◦ [jump in x at z] 

Integrating from 0 to bi, get sole candidate: 
       pi(b) :=  Σj yj ● [jump in xi at yj] 
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Example: Profit Extractor 

[Fiat/Goldberg/Hartline/Karlin STOC 02] 
Allocation Rule: bids b + revenue target R: 
  initialize S = all bidders 
  while there is an i in S such that bi <  R/|S|: 

  remove such a bidder from S 
  winners = final set S 
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Example: Profit Extractor 

[Fiat/Goldberg/Hartline/Karlin STOC 02] 
Allocation Rule: bids b + revenue target R: 
  initialize S = all bidders 
  while there is an i in S such that bi <  R/|S|: 

  remove such a bidder from S 
  winners = final set S 

Note: allocation rule is monotone. 

By Myerson's Lemma: forms a truthful auction if and 
only if every winner charged price p = R/|S| 

  if halts with non-empty set, raises revenue R 
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Revenue Maximization 

Setting: k-item auction, n unit-demand bidders. 

Goal: truthful auction with "optimal" revenue. 
  but different auctions do better on different inputs 
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Revenue Maximization 

Setting: k-item auction, n unit-demand bidders. 

Goal: truthful auction with "optimal" revenue. 
  but different auctions do better on different inputs 

Approach #1: Bayesian/average-case analysis. 
  "optimal" auction maximizes expected revenue 

Approach #2: worst-case guarantee. 
  "optimal" auction tricky to define, standard 

competitive analysis is useless 
  use "Bayesian thought experiment" instead 
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Bayesian Profit Maximization 

Example: 1 bidder, 1 item, v ~ known distribution F 
  truthful auctions = posted prices p 
  expected revenue of p:  p(1-F(p)) 

  given F, can solve for optimal p* 

  e.g., p* = ½ for v ~ uniform[0,1] 
  but: what about k,n >1 (with i.i.d. vi's)? 
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Bayesian Profit Maximization 

Example: 1 bidder, 1 item, v ~ known distribution F 
  truthful auctions = posted prices p 
  expected revenue of p:  p(1-F(p)) 

  given F, can solve for optimal p* 

  e.g., p* = ½ for v ~ uniform[0,1] 
  but: what about k,n >1 (with i.i.d. vi's)? 

Theorem: [Myerson 81] auction with max expected 
revenue is Vickrey with above reserve p*. 
  note p* is independent of k and n 

need 
minor 
technical 
conditions 
on F 
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Toward Worst-Case Analysis 

Goal: prove approximation results of the form: 

"Theorem: for every valuation profile v:                
auction A's revenue on v is at least OPT(v)/α." 
 (for a hopefully small constant α) 
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Toward Worst-Case Analysis 

Goal: prove approximation results of the form: 

"Theorem: for every valuation profile v:                
auction A's revenue on v is at least OPT(v)/α." 
 (for a hopefully small constant α) 

Idea for OPT(v): sum of k largest vi's. 

Problem: too strong, not useful. 
  makes all auctions A look equally bad. 
  every auction A has a bad v [no finite α possible] 
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Bayesian Thought Experiment 

Question: what would an i.i.d. Bayesian do? 

  formulate prior F, run the optimal auction for F      
[by Myerson => Vickrey with suitable reserve] 

Ambition: design auction A that is simultaneously 
competitive with all Bayesian optimal auctions! 

I.e.: For every F, corresponding opt auction AF: 

  A's expected revenue  ≥ (AF's expected revenue)/α 
  [Bulow/Klemperer AER 96], [Hartline/Roughgarden EC 

09], [Dhangwotnotai/Roughgarden/Yan EC 10] 
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Distribution-Free Benchmarks 

Myerson: for all F, Vickrey + a reserve is optimal. 

Corollary: for all F and all v, behavior of optimal auction for F 
equivalent to offering every bidder a common take-it-or-
leave-it offer. 
  namely: max{reserve price, (k+1)th highest bid of v} 

Upper Bound:  RB(v) : =  max  ivi     [assume sorted vi's] 

By Design: if auction A achieves revenue RB(v)/α for every v, 
then it also has "simultaneous Bayesian" guarantee. 

  [Goldberg/Hartline/Karlin/Saks/Wright GEB 06] 
  [Hartline/Roughgarden STOC 08], [Devanur/Hartline EC 09] 

i ≤ k 
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Intermission 

GO GIANTS! 
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Combinatorial Auctions (CA) 

Setting: n bidders, m goods.  Player i has private 
valuation vi (S) for each subset S of goods. 

Assume: vi (ϕ) = 0 and vi is 
  monotone:  S subset of T => vi (S) ≤ vi (T) 
  subadditive:  vi (S ∪ T) ≤ vi (S) + vi (T) 
  ignore representation issues                                    

[want running time polynomial in n and m] 

Facts: there is a poly-time 2-approximation for         
welfare Σi vi(Si) [Feige STOC 06].  No good     
truthful approximation known.  
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Multi-Parameter Problems 

Outcome space: an abstract set Ω 

Utility Model: bidder i has private valuation vi (ω) for 
each outcome ω 

  utility = vi (ω) - payment 

Example: in a combinatorial auction, Ω = all possible 
allocations of goods to players 
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How To Think About Algorithmic 
Mechanism Design 
Philosophy: designing truthful mechanisms boils 

down to designing algorithms in a certain 
"restricted computational model".  

Single-Parameter Special Case: 

implementable rules 
= monotone rules 
(Myerson's Lemma) 
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The Multi-Parameter World 

implementable rules 
= "cyclic monotone" rules 
(still have uniqueness of 
truthful payment rule) [Rochet] 
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The Multi-Parameter World 

implementable rules 
= "cyclic monotone" rules 
(still have uniqueness of 
truthful payment rule) [Rochet] 

inscrutable 
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The Multi-Parameter World 

inscrutable 

implementable rules 
= "cyclic monotone" rules 
(still have uniqueness of 
truthful payment rule) [Rochet] 

mechanisms that 
we understand 

VCG 
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The VCG Mechanism 

Utility Model: bidder i's utility: vi (ω) - payment 

Vickrey-Clarke-Groves: (1961/71/73) 
  collect bid bi (ω) for all i, all outcomes ω in Ω 
  select ω* in argmax {Σi bi (ω)} 
  charge pi  = [-Σj!=i bi (ω)] + suitable constant 

  align private objectives with global one 

Facts: truthful, maximizes welfare Σi vi (ω) over Ω 
(assuming truthful bids). 
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Approximation Mechanisms 

Assume: want to maximize welfare Σi vi (ω) 
  revenue also interesting, wide open 

Why Not VCG?: communication/computation lower 
bounds for many important problems. 

  e.g., players = nodes of graph G; 
  Ω = independent sets of G;  
  vi (ω) = 1 if i in ω, 0 otherwise 

Goal: mechanisms that are (1) truthful; (2) run in time 
polynomial in natural parameters; and  (3) 
guarantee near-optimal welfare  
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Approximation Mechanisms 

Goals: [Nisan/Ronen 99]  (1) truthful; (2) run in time 
polynomial in natural parameters; and  (3) 
guarantee near-optimal welfare  

Best-case scenario: match approximation factor of best 
polynomial-time approximation algorithm (with 
valuations given freely as input). 

Holy Grail: "black-box reduction" that turns an 
approximation algorithm into a truthful 
approximation mechanism. 



37 

Approximation Mechanisms 

Idea: [Nisan/Ronen 00]  use VCG mechanism but 
substitute approximation algorithm for the previous 
step "select ω* in argmax {Σi bi (ω)}". 

implementable = 
"cyclic monotone" 

mechanisms 
we understand VCG 
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Approximation Mechanisms 

Idea: [Nisan/Ronen 00]  use VCG mechanism but 
substitute approximation algorithm for the previous 
step "select ω* in argmax {Σi bi (ω)}". 

Issue: only truthful 
for a very special 
type of approximation 
algorithm (discussed 
next). 

implementable = 
"cyclic monotone" 

mechanisms 
we understand VCG 

more on 
this next 
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VCG-Based Mechanisms 

Outcome space: an abstract set Ω 
Utility Model: bidder i's utility: vi (ω) - payment 

Step 1: pre-commit to a subset Ω' of Ω 
Step 2: run VCG with respect to Ω' 

Facts: truthful, maximizes welfare Σi vi (ω) over Ω' 
Hope: can choose Ω' to recover tractability while 

controlling approximation factor. 
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Combinatorial Auctions (CA) 

Setting: n bidders, m goods.  Player i has private 
valuation vi (S) for each subset S of goods. 

Assume: vi (φ) = 0 and vi is 
  monotone:  S subset of T => vi (S) ≤ vi (T) 
  subadditive:  vi (S ∪ T) ≤ vi (S) + vi (T) 
  ignore representation issues                                    

[want running time polynomial in n and m] 

Fact: there is a 2-approximation for welfare Σi vi(Si) 
[Feige STOC 06], but this allocation rule is              
not implementable. 
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VCG-Based Solution 

Key Claim: for every instance, there is a     (1/2√m)-
approximate allocation that either: 

  assigns all goods to a single player; OR 
  assigns at most one good to each player 
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VCG-Based Solution 

Key Claim: for every instance, there is a     (1/2√m)-
approximate allocation that either: 

  assigns all goods to a single player; OR 
  assigns at most one good to each player 

Corollary: [Dobzinski/Nisan/Schapira STOC 05] there is a 
truthful (1/2√m)-approximate mechanism for CAs 
with subadditive bidder valuations. 

Proof: define Ω' as above; can optimize in poly-time 
via max-weight matching + case analysis. 
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VCG-Based Solution 

Proof of Key Claim: Fix vi 's.  Call a player big if it gets  
> √m goods in the optimal allocation.    (So there 
are at most √m of them.) 

Case 1: big players account for more than half of  
optimal welfare, so one big player accounts for a 
1/2√m fraction.  Give all goods to this player. 

Case 2: otherwise, small players account for half.  Give 
each its favorite good; by subadditivity, still have a 
1/2√m fraction of optimal welfare. 
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Can We Do Better? 

[Dobzinski/Nisan STOC 07]: Can't do much better using a 
deterministic VCG-based mechanism. 

  results and techniques launched very active 
research agenda on lower bounds 

  [Papadimitriou/Schapira/Singer FOCS 08], ... 

The good news: randomized mechanisms seem to hold 
much promise, for specific problems and for black-
box reductions. 

  some rigorous randomized vs. deterministic 
separations already known 
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Randomized VCG-Based 
Mechanisms 

Step 1: precommit to subset Δ' of Δ(Ω) 
  "lotteries" over outcomes 
Step 2: run VCG with respect to Δ ' 

Facts: truthful (in expectation), maximizes expected 
welfare E[Σi vi (ω)] over Δ' 

Hope: can choose Δ ' to recover tractability while 
controlling approximation factor. 

  [Lavi/Swamy FOCS 05], [Dobzinski/Dughmi FOCS 09] 
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A Black-Box Reduction 

Theorem: [Dughmi/Roughgarden FOCS 10] If a welfare-
maximization problem admits an FPTAS, then it 
admits a truthful FPTAS. 

Proof idea: Choosing Δ ' suitably and "dualizing", the 
relevant optimization problem is a slightly 
perturbed version of the original one.  Can use 
techniques from smoothed analysis [Roglin/Teng 
FOCS 09] to get expected polynomial running time. 



47 

Black-Box Reduction for       
Bayes-Nash Implementations 
Theorem: [Hartline/Lucier STOC 10], [Bei/Hartline/Huang/Kleinberg/

Malekian SODA 11]   In many Bayesian settings (where 
valuations are drawn from known distributions), every 
approximation algorithm for welfare maximization can be 
transmuted into an equally good truthful (in Bayes-Nash 
equilibrium) approximation mechanism. 

Suggestive: Bayes-Nash implementations might elude lower 
bounds for dominant-strategy truthful mechanisms (should 
such lower bounds exist). 
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Recap: Mechanism Design as 
Constrained Algorithm Design 
Philosophy: designing truthful mechanisms boils down 

to designing algorithms in a certain "restricted 
computational model".  

  single-parameter <=> monotone algorithms 
  multi-parameter: includes all the obvious VCG 

variants, but what else? 

Research Challenge: usefully characterize the 
implementable allocation rules for as many multi-
parameter problems as possible. 
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Recap: Revenue Maximization 

  Bayesian single-parameter case well solved  
  worst-case guarantees for single-parameter problems: need 

novel analysis frameworks ("Bayesian thought experiment") 
but lots of recent progress 

Research Challenges:  
  non-i.i.d. version of Bayesian thought experiment 
  (approximate) analog of Myerson's theory for multi-

parameter problems (even relatively simple ones) 
[Bhattacharya et al STOC 10], [Chawla et al STOC 10] 

  worst-case guarantees for multi-parameter problems  
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Recap: Welfare Maximization 

  ignoring tractability, VCG works even for arbitrary multi-
parameter problems 

  truthful approximation mechanisms so far mostly restricted 
to randomized variants of VCG 

  but this already enough for some interesting results 

Research Challenges:  
  better (randomized) approximation mechanisms for 

combinatorial auctions 
  more general black-box reductions 
  better lower bounds, especially for randomized mechanisms 


