
How To Think About
Algorithmic Mechanism Design

[Tutorial at FOCS 2010]

Tim Roughgarden (Stanford)

2

An eBay Single-Good Auction

.

Upshot: in an eBay auction:

  winner = highest bidder above reserve price
  price = max{second-highest bid, reserve}

3

Truthful Auctions

Utility Model: bidder i has valuation vi
  maximum willingness to pay
  known to bidder, unknown to seller

  utility = vi - price paid; or 0 if loses auction
  submits bid bi to maximize its utility

Claim: an eBay auction is truthful
  truthful bidding (bi = vi) is “foolproof”
  i.e., a false bid never outperforms a true bid

4

eBay Is Truthful

Fix player i, reserve r, other bids b-i

Observation #1: bidder i effectively faces a
“take-it-or-leave it" offer at a fixed price
p = max{reserve, highest other bid}.

Observation #2: truthful bidding guaranteed to
maximize utility (a "dominant strategy")

  case 1: (v ≤ p) max utility = 0, achieved when b = v
  case 2: (v ≥ p) max utility = v-p, achieved when b = v

5

Overarching Goals

  want to design "optimal" truthful mechanisms and
auctions
  for a wide range of problems

  combinatorial auctions, scheduling, etc.
  for different objectives (welfare, revenue)
  often require polynomial running time as well

  general design techniques, analysis frameworks

  prove limits on what is possible

6

Why Truthful?

  many mechanisms "in the wild" not truthful
  sponsored search, combinatorial auctions
  important for practical implementations

  not clear when other mechanisms (with no dominant
strategies) are fundamentally more powerful than truthful
ones; sometimes have equivalence
  e.g., "Revenue Equivalence" theorems

  truthful mechanisms definitely a good "first-cut abstraction"
for foundations of mechanism design

7

How Theory CS Can Contribute

Unsurprising fact: very rich tradition and literature on mechanism
design in economics.

•  largely "Bayesian" (i.e., average-case) settings
•  emphasizes exact solutions/characterizations
•  usually ignores communication/computation

What we have to offer:
1.  worst-case guarantees
2.  approximation bounds
3.  computational complexity

8

How To Think About Algorithmic
Mechanism Design

Philosophy: designing truthful mechanisms boils
down to designing algorithms in a certain
"restricted computational model".

Next: focus on simple class of problems where this
point is particularly clear and well understood.

9

Single-Parameter Problems

Outcome space: a set of vectors of the form
(x1, x2,..., xn) [amount of "stuff" per player]

Utility Model: bidder i has private valuation vi
(per unit of "stuff")

  utility = vi xi - payment
  submits bid bi to maximize its utility

Examples: k-unit auction, "unit-demand" bidders; job
scheduling on related machines

10

Mechanism Design Space

The essence of any truthful mechanism (formalized via
the "Revelation Principle"):

  collect bid bi from each player i
  invoke (randomized) allocation rule: bi's xi's

  who gets how much (expected) stuff

  invoke (randomized) payment rule: bi's pi's
  and who pays what

  truthfulness: for every i, vi, other bids, setting vi = bi
maximizes expected utility vi xi(b) - pi(b)

11

Two Definitions

Implementable Allocation Rule: is a function x (from
bids to expected allocations) that admits a payment
rule p such that (x,p) is truthful.

  i.e., truthful bidding [bi:=vi] always maximizes a bidder's
(expected) utility

12

Two Definitions

Implementable Allocation Rule: is a function x (from
bids to expected allocations) that admits a payment
rule p such that (x,p) is truthful.

  i.e., truthful bidding [bi:=vi] always maximizes a bidder's
(expected) utility

Monotone Allocation Rule: for every fixed bidder i,
fixed other bids b-i, expected allocation only
increases in the bid bi.

  example: highest bidder wins
  non-example: 2nd-highest bidder wins

13

Myerson's Lemma

Myerson's Lemma: [1981; also Archer-Tardos FOCS
01] an allocation rule x is implementable if and only
if it is monotone.

14

Myerson's Lemma

Myerson's Lemma: [1981; also Archer-Tardos FOCS
01] an allocation rule x is implementable if and only
if it is monotone.

Moreover: for every monotone allocation rule x, there is
a unique payment rule p such that (x,p) is truthful
and losers always pay 0.

15

Myerson's Lemma

Myerson's Lemma: [1981; also Archer-Tardos FOCS
01] an allocation rule x is implementable if and only
if it is monotone.

Moreover: for every monotone allocation rule x, there is
a unique payment rule p such that (x,p) is truthful
and losers always pay 0.

Explicit formula for pi(b):
  keep b-i fixed, increase z from 0 to bi
  consider breakpoints y1,...,yq at which xi jumps
  set pi(b) := Σj yj ● [jump in xi at yj]

16

Myerson's Lemma (Proof Idea)

Proof idea: let x be an allocation rule, fix i and b-i.
Write x(z), p(z) for xi(z, b-i), pi(z, b-i).

  apply purported truthfulness of (x,p) to two
scenarios: true value = z, false bid = z + ε and true
value = z + ε, false bid = z

  take ε to zero get
  p'(z) = z ◦ x'(z) [if x differentiable at z] or
  jump in p at z = z ◦ [jump in x at z]

Integrating from 0 to bi, get sole candidate:
 pi(b) := Σj yj ● [jump in xi at yj]

17

Example: Profit Extractor

[Fiat/Goldberg/Hartline/Karlin STOC 02]
Allocation Rule: bids b + revenue target R:
  initialize S = all bidders
  while there is an i in S such that bi < R/|S|:

  remove such a bidder from S
  winners = final set S

18

Example: Profit Extractor

[Fiat/Goldberg/Hartline/Karlin STOC 02]
Allocation Rule: bids b + revenue target R:
  initialize S = all bidders
  while there is an i in S such that bi < R/|S|:

  remove such a bidder from S
  winners = final set S

Note: allocation rule is monotone.

By Myerson's Lemma: forms a truthful auction if and
only if every winner charged price p = R/|S|

  if halts with non-empty set, raises revenue R

19

Revenue Maximization

Setting: k-item auction, n unit-demand bidders.

Goal: truthful auction with "optimal" revenue.
  but different auctions do better on different inputs

20

Revenue Maximization

Setting: k-item auction, n unit-demand bidders.

Goal: truthful auction with "optimal" revenue.
  but different auctions do better on different inputs

Approach #1: Bayesian/average-case analysis.
  "optimal" auction maximizes expected revenue

Approach #2: worst-case guarantee.
  "optimal" auction tricky to define, standard

competitive analysis is useless
  use "Bayesian thought experiment" instead

21

Bayesian Profit Maximization

Example: 1 bidder, 1 item, v ~ known distribution F
  truthful auctions = posted prices p
  expected revenue of p: p(1-F(p))

  given F, can solve for optimal p*

  e.g., p* = ½ for v ~ uniform[0,1]
  but: what about k,n >1 (with i.i.d. vi's)?

22

Bayesian Profit Maximization

Example: 1 bidder, 1 item, v ~ known distribution F
  truthful auctions = posted prices p
  expected revenue of p: p(1-F(p))

  given F, can solve for optimal p*

  e.g., p* = ½ for v ~ uniform[0,1]
  but: what about k,n >1 (with i.i.d. vi's)?

Theorem: [Myerson 81] auction with max expected
revenue is Vickrey with above reserve p*.
  note p* is independent of k and n

need
minor
technical
conditions
on F

23

Toward Worst-Case Analysis

Goal: prove approximation results of the form:

"Theorem: for every valuation profile v:
auction A's revenue on v is at least OPT(v)/α."
 (for a hopefully small constant α)

24

Toward Worst-Case Analysis

Goal: prove approximation results of the form:

"Theorem: for every valuation profile v:
auction A's revenue on v is at least OPT(v)/α."
 (for a hopefully small constant α)

Idea for OPT(v): sum of k largest vi's.

Problem: too strong, not useful.
  makes all auctions A look equally bad.
  every auction A has a bad v [no finite α possible]

25

Bayesian Thought Experiment

Question: what would an i.i.d. Bayesian do?

  formulate prior F, run the optimal auction for F
[by Myerson => Vickrey with suitable reserve]

Ambition: design auction A that is simultaneously
competitive with all Bayesian optimal auctions!

I.e.: For every F, corresponding opt auction AF:

 A's expected revenue ≥ (AF's expected revenue)/α
  [Bulow/Klemperer AER 96], [Hartline/Roughgarden EC

09], [Dhangwotnotai/Roughgarden/Yan EC 10]

26

Distribution-Free Benchmarks

Myerson: for all F, Vickrey + a reserve is optimal.

Corollary: for all F and all v, behavior of optimal auction for F
equivalent to offering every bidder a common take-it-or-
leave-it offer.
  namely: max{reserve price, (k+1)th highest bid of v}

Upper Bound: RB(v) : = max ivi [assume sorted vi's]

By Design: if auction A achieves revenue RB(v)/α for every v,
then it also has "simultaneous Bayesian" guarantee.

  [Goldberg/Hartline/Karlin/Saks/Wright GEB 06]
  [Hartline/Roughgarden STOC 08], [Devanur/Hartline EC 09]

i ≤ k

27

Intermission

GO GIANTS!

28

Combinatorial Auctions (CA)

Setting: n bidders, m goods. Player i has private
valuation vi (S) for each subset S of goods.

Assume: vi (ϕ) = 0 and vi is
  monotone: S subset of T => vi (S) ≤ vi (T)
  subadditive: vi (S ∪ T) ≤ vi (S) + vi (T)
  ignore representation issues

[want running time polynomial in n and m]

Facts: there is a poly-time 2-approximation for
welfare Σi vi(Si) [Feige STOC 06]. No good
truthful approximation known.

29

Multi-Parameter Problems

Outcome space: an abstract set Ω

Utility Model: bidder i has private valuation vi (ω) for
each outcome ω

  utility = vi (ω) - payment

Example: in a combinatorial auction, Ω = all possible
allocations of goods to players

30

How To Think About Algorithmic
Mechanism Design
Philosophy: designing truthful mechanisms boils

down to designing algorithms in a certain
"restricted computational model".

Single-Parameter Special Case:

implementable rules
= monotone rules
(Myerson's Lemma)

31

The Multi-Parameter World

implementable rules
= "cyclic monotone" rules
(still have uniqueness of
truthful payment rule) [Rochet]

32

The Multi-Parameter World

implementable rules
= "cyclic monotone" rules
(still have uniqueness of
truthful payment rule) [Rochet]

inscrutable

33

The Multi-Parameter World

inscrutable

implementable rules
= "cyclic monotone" rules
(still have uniqueness of
truthful payment rule) [Rochet]

mechanisms that
we understand

VCG

34

The VCG Mechanism

Utility Model: bidder i's utility: vi (ω) - payment

Vickrey-Clarke-Groves: (1961/71/73)
  collect bid bi (ω) for all i, all outcomes ω in Ω
  select ω* in argmax {Σi bi (ω)}
  charge pi = [-Σj!=i bi (ω)] + suitable constant

  align private objectives with global one

Facts: truthful, maximizes welfare Σi vi (ω) over Ω
(assuming truthful bids).

35

Approximation Mechanisms

Assume: want to maximize welfare Σi vi (ω)
  revenue also interesting, wide open

Why Not VCG?: communication/computation lower
bounds for many important problems.

  e.g., players = nodes of graph G;
  Ω = independent sets of G;
  vi (ω) = 1 if i in ω, 0 otherwise

Goal: mechanisms that are (1) truthful; (2) run in time
polynomial in natural parameters; and (3)
guarantee near-optimal welfare

36

Approximation Mechanisms

Goals: [Nisan/Ronen 99] (1) truthful; (2) run in time
polynomial in natural parameters; and (3)
guarantee near-optimal welfare

Best-case scenario: match approximation factor of best
polynomial-time approximation algorithm (with
valuations given freely as input).

Holy Grail: "black-box reduction" that turns an
approximation algorithm into a truthful
approximation mechanism.

37

Approximation Mechanisms

Idea: [Nisan/Ronen 00] use VCG mechanism but
substitute approximation algorithm for the previous
step "select ω* in argmax {Σi bi (ω)}".

implementable =
"cyclic monotone"

mechanisms
we understand VCG

38

Approximation Mechanisms

Idea: [Nisan/Ronen 00] use VCG mechanism but
substitute approximation algorithm for the previous
step "select ω* in argmax {Σi bi (ω)}".

Issue: only truthful
for a very special
type of approximation
algorithm (discussed
next).

implementable =
"cyclic monotone"

mechanisms
we understand VCG

more on
this next

39

VCG-Based Mechanisms

Outcome space: an abstract set Ω
Utility Model: bidder i's utility: vi (ω) - payment

Step 1: pre-commit to a subset Ω' of Ω
Step 2: run VCG with respect to Ω'

Facts: truthful, maximizes welfare Σi vi (ω) over Ω'
Hope: can choose Ω' to recover tractability while

controlling approximation factor.

40

Combinatorial Auctions (CA)

Setting: n bidders, m goods. Player i has private
valuation vi (S) for each subset S of goods.

Assume: vi (φ) = 0 and vi is
  monotone: S subset of T => vi (S) ≤ vi (T)
  subadditive: vi (S ∪ T) ≤ vi (S) + vi (T)
  ignore representation issues

[want running time polynomial in n and m]

Fact: there is a 2-approximation for welfare Σi vi(Si)
[Feige STOC 06], but this allocation rule is
not implementable.

41

VCG-Based Solution

Key Claim: for every instance, there is a (1/2√m)-
approximate allocation that either:

  assigns all goods to a single player; OR
  assigns at most one good to each player

42

VCG-Based Solution

Key Claim: for every instance, there is a (1/2√m)-
approximate allocation that either:

  assigns all goods to a single player; OR
  assigns at most one good to each player

Corollary: [Dobzinski/Nisan/Schapira STOC 05] there is a
truthful (1/2√m)-approximate mechanism for CAs
with subadditive bidder valuations.

Proof: define Ω' as above; can optimize in poly-time
via max-weight matching + case analysis.

43

VCG-Based Solution

Proof of Key Claim: Fix vi 's. Call a player big if it gets
> √m goods in the optimal allocation. (So there
are at most √m of them.)

Case 1: big players account for more than half of
optimal welfare, so one big player accounts for a
1/2√m fraction. Give all goods to this player.

Case 2: otherwise, small players account for half. Give
each its favorite good; by subadditivity, still have a
1/2√m fraction of optimal welfare.

44

Can We Do Better?

[Dobzinski/Nisan STOC 07]: Can't do much better using a
deterministic VCG-based mechanism.

  results and techniques launched very active
research agenda on lower bounds

  [Papadimitriou/Schapira/Singer FOCS 08], ...

The good news: randomized mechanisms seem to hold
much promise, for specific problems and for black-
box reductions.

  some rigorous randomized vs. deterministic
separations already known

45

Randomized VCG-Based
Mechanisms

Step 1: precommit to subset Δ' of Δ(Ω)
  "lotteries" over outcomes
Step 2: run VCG with respect to Δ '

Facts: truthful (in expectation), maximizes expected
welfare E[Σi vi (ω)] over Δ'

Hope: can choose Δ ' to recover tractability while
controlling approximation factor.

  [Lavi/Swamy FOCS 05], [Dobzinski/Dughmi FOCS 09]

46

A Black-Box Reduction

Theorem: [Dughmi/Roughgarden FOCS 10] If a welfare-
maximization problem admits an FPTAS, then it
admits a truthful FPTAS.

Proof idea: Choosing Δ ' suitably and "dualizing", the
relevant optimization problem is a slightly
perturbed version of the original one. Can use
techniques from smoothed analysis [Roglin/Teng
FOCS 09] to get expected polynomial running time.

47

Black-Box Reduction for
Bayes-Nash Implementations
Theorem: [Hartline/Lucier STOC 10], [Bei/Hartline/Huang/Kleinberg/

Malekian SODA 11] In many Bayesian settings (where
valuations are drawn from known distributions), every
approximation algorithm for welfare maximization can be
transmuted into an equally good truthful (in Bayes-Nash
equilibrium) approximation mechanism.

Suggestive: Bayes-Nash implementations might elude lower
bounds for dominant-strategy truthful mechanisms (should
such lower bounds exist).

48

Recap: Mechanism Design as
Constrained Algorithm Design
Philosophy: designing truthful mechanisms boils down

to designing algorithms in a certain "restricted
computational model".

  single-parameter <=> monotone algorithms
  multi-parameter: includes all the obvious VCG

variants, but what else?

Research Challenge: usefully characterize the
implementable allocation rules for as many multi-
parameter problems as possible.

49

Recap: Revenue Maximization

  Bayesian single-parameter case well solved
  worst-case guarantees for single-parameter problems: need

novel analysis frameworks ("Bayesian thought experiment")
but lots of recent progress

Research Challenges:
  non-i.i.d. version of Bayesian thought experiment
  (approximate) analog of Myerson's theory for multi-

parameter problems (even relatively simple ones)
[Bhattacharya et al STOC 10], [Chawla et al STOC 10]

  worst-case guarantees for multi-parameter problems

50

Recap: Welfare Maximization

  ignoring tractability, VCG works even for arbitrary multi-
parameter problems

  truthful approximation mechanisms so far mostly restricted
to randomized variants of VCG

  but this already enough for some interesting results

Research Challenges:
  better (randomized) approximation mechanisms for

combinatorial auctions
  more general black-box reductions
  better lower bounds, especially for randomized mechanisms

