
Intractability in                  
Algorithmic Game Theory

Tim Roughgarden
Stanford University



2 

How Theory CS Can Contribute

Unsurprising fact: very rich tradition and literature on 
mechanism design and equilibria in economics.

•  largely "Bayesian" (i.e., average-case) settings
•  emphasizes exact solutions/characterizations
•  usually ignores communication/computation

What we have to offer:
1.  worst-case guarantees
2.  approximation bounds
3.  computational complexity
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Overview
Part I: Algorithmic Mechanism Design
•  goal: design polynomial-time protocols so that self-

interested behavior leads to socially desirable outcome
•  intractability from joint computational, incentive constraints

Part II: Revenue-Maximizing Auctions
•  Information-theoretic intractability
•  Interpolation of worst-case, average-case analysis

Part III: Complexity of Computing Equilibria
•  Computing Nash equilibria is PPAD-complete
•  Interpretations and open questions
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References

•  FOCS 2010 tutorial, “How to Think About 
Algorithmic Mechanism Design”

•  video available from my home page

•  CACM July 2010                                            
survey article,  
“Algorithmic Game              
Theory”.
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An eBay Single-Good Auction

.

Upshot: in an eBay auction:

n  winner = highest bidder above reserve price
n  price = max{second-highest bid, reserve}
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Truthful Auctions

Claim: a second-price auction (like eBay) is truthful
n  bidding your maximum willingness to pay (your 

“value”) is “foolproof” (a dominant strategy)
n  i.e., your utility (value – price) is at least as large 

with a truthful bid as with any other bid

Proof idea: truthful bid equips the auctioneer (who 
knows all the bids) to bid optimally on your behalf.
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A More Complex Example

Setup: n bidders, m houses.
n  each bidder i has private value                                

vij for house j, wants ≤ 1 house.

Analog of 2nd-price auction:
n  every bidder submits bid for every house
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A More Complex Example

Setup: n bidders, m houses.
n  each bidder i has private value                                

vij for house j, wants ≤ 1 house.

Analog of 2nd-price auction:
n  every bidder submits bid for every house
n  compute a max-value matching
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A More Complex Example

Setup: n bidders, m houses.
n  each bidder i has private value                                

vij for house j, wants ≤ 1 house.

Analog of 2nd-price auction:
n  every bidder submits bid for every house
n  compute a max-value matching
n  charge suitable payments so that bidding true 

values is dominant strategy for every bidder  
(relatively simple calculation: this can be done)
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Another More Complex Example

Setup: n bidders, m goods.
n  bidder i has private value vi                                  

for known subset Si of goods
Analog of 2nd-price auction:
n  every bidder submits a bid for the bundle it wants
n  compute a max-value packing
n  charge suitable payments so that bidding true 

values is dominant strategy for every bidder  
(relatively simple calculation: this can be done)
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Another More Complex Example

Setup: n bidders, m goods.
n  bidder i has private value vi                                  

for known subset Si of goods
Analog of 2nd-price auction:
n  every bidder submits a bid for the bundle it wants
n  compute a max-value packing
n  charge suitable payments so that bidding true 

values is dominant strategy for every bidder  
(relatively simple calculation: this can be done)

NP-hard! 
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The Research Agenda

[Nisan/Ronen 99] For as many optimization 
problems as possible, design a mechanism:
•  runs in polynomial time
•  every player has a dominant strategy
•  dominant strategies yield near-optimal outcome

Examples: Can maximize welfare (sum of values) 
exactly in single-item and matching problems.
•  special cases of the “VCG mechanism”
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The Research Agenda

goal: runs in poly-time, dominant strategies yield near-optimal outcome

Holy grail: Match approximation factor of best-
known poly-time approximation algorithm.
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The Research Agenda

goal: runs in poly-time, dominant strategies yield near-optimal outcome

Holy grail: Match approximation factor of best-
known poly-time approximation algorithm.
Obvious approach: 
1.  every bidder submits bids 
2.  compute an approximately max-value solution 

using best-known approximation algorithm 
3.  charge suitable payments so that bidding true 

values is dominant strategy for every bidder
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The Research Agenda

goal: runs in poly-time, dominant strategies yield near-optimal outcome

holy grail: match approximation factor of best approximation algorithm.

Problem [Nisan/Ronen 00] for all but a special type 
of approximation algorithms, no payments make 
truthful bidding a dominant strategy.

How to think about algorithmic mechanism design: 
designing truthful mechanisms boils down to 
designing algorithms in a certain "restricted 
computational model".  
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The Punch Line
Theorem(s): Joint intractability of computational and 
game-theoretic constraints often much more severe 
than that of either constraint by itself.
•  1st compelling example: [Papadimitriou/Schapira/Singer FOCS 

08]
•  O(1)-approximation with only poly-time or GT 

constraints, Ω(poly(n))-approximation with both
•  blends Robert’s theorem, probabilistic method, Sauer-

Shelah Lemma, and a clever embedding of 3SAT
•  state of the art (2011-12): Dobzinski, Dughmi, Vondrak
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Overview
Part I: Algorithmic Mechanism Design
•  goal: design polynomial-time protocols so that self-

interested behavior leads to socially desirable outcome
•  intractability from joint computational, incentive constraints

Part II: Revenue-Maximizing Auctions
•  Information-theoretic intractability
•  Interpolation of worst-case, average-case analysis

Part III: Complexity of Computing Equilibria
•  Computing Nash equilibria is PPAD-complete
•  Interpretations and open questions
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Reference

•  Jason Hartline, “Approximation in Economic 
Design”, book in preparation, 2013.
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Welfare vs. Revenue

Question: why should revenue maximization be 
different than welfare-maximization?

Answer: welfare defined extrinsic to the auction, 
payments generated by auction itself.

q  in 2nd-price auction, payments only means to an end
n  clear what “maximum-possible welfare” means
n  not clear what “max-possible revenue” means
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Example: Multi-Unit Auctions

Setup: n bidders, k identical goods.
q  bidder i has private “valuation” vi  for a good
q  vi  = maximum willingness to pay

Design space: decide on:
n  (1) at most k winners; and (2) selling prices.

Example: Vickrey auction.
n  top k bidders win; all pay (k+1)th highest bid

Variant: Vickrey with a reserve.   [≈extra bid by seller]
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Auction Benchmarks

Goal: design an auction A for which:

"Theorem: for every valuation profile v:                
auction A's revenue on v is at least OPT(v)/α."
(for a hopefully small constant α)
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Auction Benchmarks

Goal: design an auction A for which:

"Theorem: for every valuation profile v:                
auction A's revenue on v is at least OPT(v)/α."
(for a hopefully small constant α)

Idea for OPT(v): sum of k largest vi's.
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Auction Benchmarks

Goal: design an auction A for which:

"Theorem: for every valuation profile v:                
auction A's revenue on v is at least OPT(v)/α."
(for a hopefully small constant α)

Idea for OPT(v): sum of k largest vi's.

Problem: too strong, not useful.
q  all auctions A are terrible [no constant α is possible]
q  “optimal” auction for this benchmark is uninteresting
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Classic Optimal Auctions

Example: 1 bidder, 1 item, v ~ known distribution F
n  want to choose optimal reserve price p
n  expected revenue of p:  p(1-F(p))

q  given F, can solve for optimal p*

q  e.g., p* = ½ for v ~ uniform[0,1]
n  but: what about k,n >1 (with i.i.d. vi's)?
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Classic Optimal Auctions

Example: 1 bidder, 1 item, v ~ known distribution F
n  want to choose optimal reserve price p
n  expected revenue of p:  p(1-F(p))

q  given F, can solve for optimal p*

q  e.g., p* = ½ for v ~ uniform[0,1]
n  but: what about k,n >1 (with i.i.d. vi's)?

Theorem: [Myerson 81] auction with max expected 
revenue is second-price with above reserve p*.
q  note p* is independent of k and n

need minor 
“regularity” 
condition 
on F 
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Prior-Independent Auctions

New goal: [Dhangwatnotai/Roughgarden/Yan EC 10] 
prove results of the form:

"Theorem: for every distribution D:  
 Ev~D[rev(A(v))]  ≥   (Ev~D [rev(OPTD(v))])/α”
(for a hopefully small constant α)
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Prior-Independent Auctions

New goal: [Dhangwatnotai/Roughgarden/Yan EC 10] 
prove results of the form:

"Theorem: for every distribution D (in some set C):  
 Ev~D[rev(A(v))]  ≥   (Ev~D [rev(OPTD(v))])/α”
(for a hopefully small constant α)

Interpretation of C: provides knob to tune 
“optimality vs. robustness” trade-off.

q  a single auction that is simultaneously near-optimal 
across many average-case settings.
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Bulow-Klemperer Theorem

Setup: single-item auction.  Let D be a valuation 
distribution.  [Needs to be "regular".]

Theorem: [Bulow-Klemperer 96]:  for every n≥1: 

   E[2nd-price revenue]           E[OPTD's revenue]
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Bulow-Klemperer Theorem

Setup: single-item auction.  Let D be a valuation 
distribution.  [Needs to be "regular".]

Theorem: [Bulow-Klemperer 96]:  for every n≥1: 

   E[2nd-price revenue]    ≥     E[OPTD's revenue]
    [with (n+1) i.i.d. bidders]                      [with n i.i.d. bidders]
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Bulow-Klemperer Theorem

Setup: single-item auction.  Let D be a valuation 
distribution.  [Needs to be "regular".]

Theorem: [Bulow-Klemperer 96]:  for every n≥1: 

   E[2nd-price revenue]    ≥     E[OPTD's revenue]
    [with (n+1) i.i.d. bidders]                      [with n i.i.d. bidders]

Usual interpretation: small increase in competition 
more important than running optimal auction.

Also: 2nd-price ≈ a good prior-independent auction!
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Overview
Part I: Algorithmic Mechanism Design
•  goal: design polynomial-time protocols so that self-

interested behavior leads to socially desirable outcome
•  intractability from joint computational, incentive constraints

Part II: Revenue-Maximizing Auctions
•  Information-theoretic intractability
•  Interpolation of worst-case, average-case analysis

Part III: Complexity of Computing Equilibria
•  Computing Nash equilibria is PPAD-complete
•  Interpretations and open questions
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•  T. Roughgarden, Computing Equilibria: A 
Computational Complexity Perspective, survey 
for Economic Theory, 2010.
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Example: Prisoner’s Dilemma

5, 5 

1, 1 10, 0 

0, 10 

cooperate defect 

defect 

cooperate 
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Example: Prisoner’s Dilemma

5, 5 

1, 1 10, 0 

0, 10 

cooperate defect 

defect 

cooperate 
the (unique) 
Nash equilibrium 
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Example: Penalty Kick Game

0, 1 

0, 1 1, 0 

1, 0 

dive left dive right 

kick right 

kick left 
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Example: Penalty Kick Game

0, 1 

0, 1 1, 0 

1, 0 

dive left dive right 

kick right 

kick left 

(unique) Nash equilibrium: kicker and goalie each pick a strategy 
uniformly at random 
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The 2-Nash Problem

Input: a bimatrix game (one pair of integer payoffs 
per entry of an m×n matrix).

Output: a Nash equilibrium. (any one will do)

existence guaranteed by 
[Nash 51] or by Lemke-
Howson algorithm 
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The 2-Nash Problem

Input: a bimatrix game (one pair of integer payoffs 
per entry of an m×n matrix).

Output: a Nash equilibrium. (any one will do)

Fact: no polynomial-time algorithm is known.

Question: How to amass evidence of intractability?

existence guaranteed by 
[Nash 51] or by Lemke-
Howson algorithm 
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The 2-Nash Problem

Input: a bimatrix game (one pair of integer payoffs 
per entry of an m×n matrix).

Output: a Nash equilibrium. (any one will do)

Fact: no polynomial-time algorithm is known.

Question: How to amass evidence of intractability?

NP-hard?: Not unless NP=coNP.
q  decision version is trivial, only search version is hard

existence guaranteed by 
[Nash 51] or by Lemke-
Howson algorithm 
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PPAD

Question: if 2-Nash were complete
for some complexity class, what
class would it be? FP 

TFNP 

FNP 
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PPAD

Question: if 2-Nash were complete
for some complexity class, what
class would it be?

Answer: PPAD [Papadimitriou 90]

FP 

PPAD 
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PPAD

Question: if 2-Nash were complete
for some complexity class, what
class would it be?

Answer: PPAD [Papadimitriou 90]

Theorem: [Chen/Deng/Teng 06], extending [Daskalakis/
Goldberg/Papadimitriou 05] 2-Nash is PPAD-complete.

FP 

PPAD 

TFNP 

FNP 
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PPAD

Question: if 2-Nash were complete
for some complexity class, what
class would it be?

Answer: PPAD [Papadimitriou 90]

Theorem: [Chen/Deng/Teng 06], extending [Daskalakis/
Goldberg/Papadimitriou 05] 2-Nash is PPAD-complete.

Question: That’s a great result.  But how hard is 
PPAD, really?

FP 

PPAD 

TFNP 

FNP 
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Is PPAD Intractable?

Evidence of intractability (FP≠PPAD):
n  several very smart people have           

worked on a few complete problems
n  oracle separation [Beame/Cook/Edmonds/                   

Impagliazzo/Pitassi 98], black-box lower bounds                     
for fixed points [Hirsch/Papadimitriou/Vavasis 89]

But: no known “complexity earthquakes” if 
FP=PPAD (“just” a bunch of new poly-time 
algorithms for several tough problems).

FP 

PPAD 

TFNP 

FNP 



45 

Is PPAD Intractable?

Possible research directions:
n  find a subexponential-time algorithm for                          

the 2-Nash problem
n  relate PPAD-hardness to better-understood           

hardness notions                                                      
(existence of one-way functions?)

n  relate PPAD (or PLS, etc.) to BQP
n  potentially easier for positive results: approximate Nash 

equilibria (solvable in nO(log n) time [Lipton/Markakis/Mehta 03])
n  convincing implications for economic analysis?

FP 

PPAD 

TFNP 

FNP 
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Conclusions
Algorithmic Mechanism Design
•  intractability from joint computational, incentive constraints
•  new direction: “Bayes-Nash” implementations

Revenue-Maximizing Auctions
•  Interpolation of worst-case, average-case analysis
•  When are good prior-independent auctions possible?

Complexity of Computing Equilibria
•  How hard is PPAD?
•  Stronger connections to economic analysis?


