Intractability in
Algorithmic Game Theory

Tim Roughgarden

Stanford University



How Theory CS Can Contribute

Unsurprising fact: very rich tradition and literature on
mechanism design and equilibria in economics.

largely "Bayesian" (i.e., average-case) settings
emphasizes exact solutions/characterizations
usually ignores communication/computation

What we have to offer:
worst-case guarantees
approximation bounds
computational complexity



Overview

Part I: Algorithmic Mechanism Design

goal: design polynomial-time protocols so that self-
interested behavior leads to socially desirable outcome

intractability from joint computational, incentive constraints

Part |I: Revenue-Maximizing Auctions
Information-theoretic intractability
Interpolation of worst-case, average-case analysis

Part Ill: Complexity of Computing Equilibria
Computing Nash equilibria is PPAD-complete
Interpretations and open questions
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An eBay Single-Good Auction

Q SUNN O Black One 2xLP Translucent Grey Swirl boris isis - eBay (item 130445081930 end time Oct-24-10 20:00:43 PDT) - Mozilla Firefox
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Read scimg.auctiva.com

= winner = highest bidder above reserve price

= price = max{second-highest bid, reserve}




Truthful Auctions

Claim: a second-price auction (like eBay) is truthful

bidding your maximum willingness to pay (your
“value”) is “foolproof” (a dominant strategy)

l.e., your utility (value — price) is at least as large
with a truthful bid as with any other bid

Proof idea: truthful bid equips the auctioneer (who
knows all the bids) to bid optimally on your behalf.



A More Complex Example

Setup: n bidders, m houses.

= each bidder i has private value
v; for house |, wants < 1 house.

Analog of 2"9-price auction:
= every bidder submits bid for every house
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A More Complex Example

Setup: n bidders, m houses.

each bidder | has private value
v; for house |, wants < 1 house.

Analog of 2"9-price auction:
every bidder submits bid for every house
compute a max-value matching

charge suitable payments so that bidding true

values is dominant strategy for every bidder
(relatively simple calculation: this can be done)



Another More Complex Example

Setup: n bidders, m goods. &
bidder i has private value v, Q' 'QPI@
for known subset S; of goods

Analog of 2"9-price auction:
every bidder submits a bid for the bundle it wants

compute a max-value packing

charge suitable payments so that bidding true
values is dominant strategy for every bidder
(relatively simple calculation: this can be done)
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Another More Complex Example

Setup: n bidders, m goods. &
bidder i has private value v, Q' 'QPI@
for known subset S; of goods

Analog of 2"9-price auction:
every bidder submits a bid for the bundle it wants

compute a max-value packing «——— NP-hard!

charge suitable payments so that bidding true
values is dominant strategy for every bidder
(relatively simple calculation: this can be done)
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The Research Agenda

[Nisan/Ronen 99] For as many optimization
problems as possible, design a mechanism:

runs in polynomial time
every player has a dominant strategy
dominant strategies yield near-optimal outcome

Examples: Can maximize welfare (sum of values)
exactly in single-item and matching problems.

special cases of the “VYCG mechanism”
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The Research Agenda

goal: runs in poly-time, dominant strategies yield near-optimal outcome

Holy grail: Match approximation factor of best-
known poly-time approximation algorithm.
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The Research Agenda

goal: runs in poly-time, dominant strategies yield near-optimal outcome

Holy grail: Match approximation factor of best-
known poly-time approximation algorithm.

Obvious approach:

1. every bidder submits bids

2. compute an approximately max-value solution
using best-known approximation algorithm

3. charge suitable payments so that bidding true
values is dominant strategy for every bidder
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The Research Agenda

goal: runs in poly-time, dominant strategies yield near-optimal outcome

holy grail: match approximation factor of best approximation algorithm.

Problem [Nisan/Ronen 00] for all but a special type
of approximation algorithms, no payments make
truthful bidding a dominant strategy.

How to think about algorithmic mechanism design:
designing truthful mechanisms boils down to
designing algorithms in a certain "restricted
computational model”.
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The Punch Line

Theorem(s): Joint intractability of computational and
game-theoretic constraints often much more severe
than that of either constraint by itself.

1t compelling example: [Papadimitriou/Schapira/Singer FOCS
08]

O(1)-approximation with only poly-time or GT
constraints, Q(poly(n))-approximation with both

blends Robert’s theorem, probabilistic method, Sauer-
Shelah Lemma, and a clever embedding of 3SAT

state of the art (2011-12): Dobzinski, Dughmi, Vondrak
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Overview

Part |: Algorithmic Mechanism Design

goal: design polynomial-time protocols so that self-
iInterested behavior leads to socially desirable outcome

intractability from joint computational, incentive constraints

Part II: Revenue-Maximizing Auctions
Information-theoretic intractability
Interpolation of worst-case, average-case analysis

Part Ill: Complexity of Computing Equilibria
Computing Nash equilibria is PPAD-complete
Interpretations and open questions
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Reference

Jason Hartline, “Approximation in Economic
Design”, book in preparation, 2013.
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Welfare vs. Revenue

Question: why should revenue maximization be
different than welfare-maximization?

Answer: welfare defined extrinsic to the auction,
payments generated by auction itself.

o in 2"9-price auction, payments only means to an end
clear what “maximum-possible welfare” means

not clear what “max-possible revenue” means
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Example: Multi-Unit Auctions

Setup: n bidders, k identical goods.

o bidder i has private “valuation” v; for a good
o v; = maximum willingness to pay

Design space: decide on:
(1) at most k winners; and (2) selling prices.

Example: Vickrey auction.
top k bidders win; all pay (k+1)th highest bid

Variant: Vickrey with a reserve. [=extra bid by seller]
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Auction Benchmarks

Goal: design an auction A for which:

"Theorem: for every valuation profile v:
auction A's revenue on v is at least OPT(v)/a."”

(for a hopefully small constant a)
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Auction Benchmarks

Goal: design an auction A for which:

"Theorem: for every valuation profile v:
auction A's revenue on v is at least OPT(v)/a."”

(for a hopefully small constant a)

Idea for OPT(v): sum of k largest v's.
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Auction Benchmarks

Goal: design an auction A for which:

"Theorem: for every valuation profile v:
auction A's revenue on v is at least OPT(v)/a."”

(for a hopefully small constant a)

dea for OPT(v): sum of k largest v.'s.

“roblem: too strong, not useful.
o all auctions A are terrible [no constant a is possible]
o “optimal” auction for this benchmark is uninteresting
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Classic Optimal Auctions

Example: 1 bidder, 1 item, v ~ known distribution F
want to choose optimal reserve price p

expected revenue of p: p(1-F(p))
o given F, can solve for optimal p
o e.g., p =Y for v~ uniform[0,1]

but: what about k,n >1 (with i.i.d. v;'s)?
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Classic Optimal Auctions

Example: 1 bidder, 1 item, v ~ known distribution F
want to choose optimal reserve price p
need minor

expected revenue of p: p(1-F(p)) regularity’
o given F, can solve for optimal p’ gz”gition
o e.g., p =Y for v~ uniform[0,1]

but: what about k,n >1 (with i.i.d. v;'s)?

Theorem: [Myerson 81] auction with max expected
revenue is second-price with above reserve p'.
o note p’is independent of k and n
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Prior-Independent Auctions

New goal: [Dhangwatnotai/Roughgarden/Yan EC 10]
prove results of the form:

"Theorem: for every distribution D:
E, plrev(A(W))] = (E,p[rev(OPT,(v))))/a”
(for a hopefully small constant a)
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Prior-Independent Auctions

New goal: [Dhangwatnotai/Roughgarden/Yan EC 10]
prove results of the form:

"Theorem: for every distribution D (in some set C):
E, plrev(A(W))] = (E,p[rev(OPT,(v))))/a”
(for a hopefully small constant a)

Interpretation of C: provides knob to tune
“optimality vs. robustness” trade-off.

0 a single auction that is simultaneously near-optimal
across many average-case settings.
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Bulow-Klemperer Theorem

Setup: single-item auction. Let D be a valuation
distribution. [Needs to be "regular".]

Theorem: [Bulow-Klemperer 96]: for every n=1:

E[2M9-price revenue] E[OPT,'s revenue]
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Bulow-Klemperer Theorem

Setup: single-item auction. Let D be a valuation
distribution. [Needs to be "regular".]

Theorem: [Bulow-Klemperer 96]: for every n=1:

E[2"-price revenue] = E[OPT,'s revenue]
[with (n+1) i.i.d. bidders] [with n i.i.d. bidders]
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Bulow-Klemperer Theorem

Setup: single-item auction. Let D be a valuation
distribution. [Needs to be "regular".]

Theorem: [Bulow-Klemperer 96]: for every n=1:

E[2"-price revenue] = E[OPT,'s revenue]
[with (n+1) i.i.d. bidders] [with n i.i.d. bidders]

Usual interpretation: small increase in competition
more important than running optimal auction.

Also: 2"d-price =~ a good prior-independent auction!

30



Overview

Part |: Algorithmic Mechanism Design

goal: design polynomial-time protocols so that self-
iInterested behavior leads to socially desirable outcome

intractability from joint computational, incentive constraints

Part |I: Revenue-Maximizing Auctions
Information-theoretic intractability
Interpolation of worst-case, average-case analysis

Part Ill: Complexity of Computing Equilibria
Computing Nash equilibria is PPAD-complete
Interpretations and open questions
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T. Roughgarden, Computing Equilibria: A
Computational Complexity Perspective, survey
for Economic Theory, 2010.
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Example: Prisoner’s Dilemma

cooperate

defect

cooperate defect
5,9 | 0,10
10,0 | 1,1
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Example: Prisoner’s Dilemma

cooperate

defect

cooperate

defect

5,95

0, 10

the (unique)

10, 0

td

~ s
~ ”
———————

/ Nash equilibrium
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Example: Penalty Kick Game

dive left dive right

kick left O, 1 1, O

kick right 1, 0 O, 1




Example: Penalty Kick Game

dive left dive right

kick left O, 1 1, O

kick right 1, 0 O, 1

(unique) Nash equilibrium: kicker and goalie each pick a strategy
uniformly at random



The 2-Nash Problem

Input: a bimatrix game (one pair of integer payoffs
per entry of an mxn matrix). existence guaranteed by

[Nash 51] or by Lemke-
/ Howson algorithm

Output: a Nash equilibrium. (any one will do)
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The 2-Nash Problem

Input: a bimatrix game (one pair of integer payoffs

per entry of an mxn matrix). existence guaranteed by
[Nash 51] or by Lemke-

/ Howson algorithm

Output: a Nash equilibrium. (any one will do)
Fact: no polynomial-time algorithm is known.

Question: How to amass evidence of intractability?
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The 2-Nash Problem

Input: a bimatrix game (one pair of integer payoffs

per entry of an mxn matrix). existence guaranteed by
[Nash 51] or by Lemke-

/ Howson algorithm

Output: a Nash equilibrium. (any one will do)
Fact: no polynomial-time algorithm is known.
Question: How to amass evidence of intractability?

NP-hard?: Not unless NP=coNP.
o decision version is trivial, only search version is hard
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PPAD

Question: if 2-Nash were complete
for some complexity class, what
class would it be?

FNP

TFNP
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PPAD

Question: if 2-Nash were complete
for some complexity class, what
class would it be?

Answer: PPAD [Papadimitriou 90]

FNP

TFNP

PPAD
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PPAD

FNP

Question: if 2-Nash were complete PG

for some complexity class, what PPAD

class would it be?

Answer: PPAD [Papadimitriou 90]

Theorem: [Chen/Deng/Teng 06], extending [Daskalakis/
Goldberg/Papadimitriou 05] 2-Nash is PPAD-complete.
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PPAD

FNP

Question: if 2-Nash were complete PNy

for some complexity class, what PPAD

class would it be?

Answer: PPAD [Papadimitriou 90]

Theorem: [Chen/Deng/Teng 06], extending [Daskalakis/
Goldberg/Papadimitriou 05] 2-Nash is PPAD-complete.

Question: That’s a great result. But how hard is
PPAD, really?
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Is PPAD Intractable?

FNP

Evidence of intractability (FPPPAD): [/ 2

several very smart people have PPAD
worked on a few complete problems

oracle separation [Beame/Cook/Edmonds/

Impagliazzo/Pitassi 98], black-box lower bounds
for fixed points [Hirsch/Papadimitriou/Vavasis 89]

But: no known “complexity earthquakes” if
FP=PPAD (“just” a bunch of new poly-time
algorithms for several tough problems).
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Is PPAD Intractable?

Possible research directions:

find a subexponential-time algorithm for
the 2-Nash problem

relate PPAD-hardness to better-understood
hardness notions
(existence of one-way functions?)

relate PPAD (or PLS, etc.) to BQP

FNP

TFNP

PPAD

potentially easier for positive results: approximate Nash
equilibria (solvable in n©eg n) time [Lipton/Markakis/Mehta 03])

convincing implications for economic analysis?
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Conclusions

Algorithmic Mechanism Design

intractability from joint computational, incentive constraints
new direction: “Bayes-Nash” implementations

Revenue-Maximizing Auctions

Interpolation of worst-case, average-case analysis
When are good prior-independent auctions possible?

Complexity of Computing Equilibria
How hard is PPAD?
Stronger connections to economic analysis?

46



