The Pseudodimension of Near-Optimal Auctions

Jamie Morgenstern (Penn) Tim Roughgarden (Stanford)

What Is...Simple?

What makes a mechanism "simple" or "complex"?

What Is...Simple?

What makes a mechanism "simple" or "complex"?

Simple vs. Optimal Theorem [Hartline/Roughgarden 09] (extending [Chawla/Hartline/Kleinberg 07]): in singleparameter settings, independent but not identical private valuations:

expected revenue of VCG with monopoly reserves $\geq \frac{1}{2} \cdot (\text{OPT expected revenue})$

What Is...Simple?

[Babaioff/Immorlica/Lucier/Weinberg 14] for a single buyer, k items, additive and independent valuations:

better of selling the grand bundle or \geq constant •(OPT expected revenue) selling items separately

- [Yao 15] extends to multiple buyers
- [Rubinstein/Weinberg 15] extends to subadditive valuations.

Quantifying Simplicity

Goal: quantitative definition of "mechanism simplicity."

Some example research directions:

- upper and lower bounds on best-possible performance guarantees of simple mechanisms
 - e.g., identify settings where only complex mechanisms can be approximately optimal
- automatic consequences of simplicity
 - formal justification for pursuit of simple mechanisms

5

• e.g., to learning near-optimal auctions from data

Simplicity Has Many Forms

- will consider only direct-revelation DSIC mechanisms
 randomized mechanisms OK
- not discussed: distinctions between DSIC, "obviously" DSIC [Li 15], deferred acceptance [Milgrom/Segal 15]
- not discussed: indirect mechanisms, e.g. with message space << type space
 - useful simplicity measure = number of actions/dimension of message space [Roughgarden 14]
- not discussed: polynomial communication/computation

6

not very relevant in our motivating examples

Related Work

- menu complexity [Hart/Nisan 13]
 - measures complexity of a single deterministic mechanism
 - maximum number of distinct options (allocations/prices) available to a player (ranging over others' bids)
 - selling items separately = maximum-possible menu complexity (exponential in the number of items)

Related Work

- menu complexity [Hart/Nisan 13]
 - measures complexity of a single deterministic mechanism
 - maximum number of distinct options (allocations/prices) available to a player (ranging over others' bids)
 - selling items separately = maximum-possible menu complexity (exponential in the number of items)
- mechanism design via machine learning [Balcan/Blum/ Hartline/Mansour 08]
 - covering number measures complexity of a family of auctions
 - prior-free setting (benchmarks instead of unknown distributions)
 - near-optimal mechanisms for unlimited-supply settings

Pseudodimension: Examples

Proposed simplicity measure of a class C of mechanisms: *pseudodimension* of the real valued functions (from valuation profiles to revenue) induced by C.

9

Pseudodimension: Examples

Proposed simplicity measure of a class C of mechanisms: *pseudodimension* of the real valued functions (from valuation profiles to revenue) induced by C.

Examples:

- Vickrey auction, anonymous reserve
- Vickrey auction, bidder-specific reserves
- grand bundling/selling items separately
- virtual welfare maximizers

O(1) O(n log n) O(k log k) unbounded

Theorem: [Haussler 92], [Anthony/Bartlett 99] if C has low pseudodimension, then it is easy to learn from data the best mechanism in C.

Theorem: [Haussler 92], [Anthony/Bartlett 99] if C has low pseudodimension, then it is easy to learn from data the best mechanism in C.

- "data" = samples from unknown valuation distribution F
 - Yahoo! example: [Ostrovsky/Schwarz 09]

Theorem: [Haussler 92], [Anthony/Bartlett 99] if C has low pseudodimension, then it is easy to learn from data the best mechanism in C.

- "data" = samples from unknown valuation distribution F
 - Yahoo! example: [Ostrovsky/Schwarz 09]
- theoretical work: [Elkind 07], [Dhangwatnotai/Roughgarden/ Yan 10], [Cole/Roughgarden 14], [Chawla/Hartline/Nekipelov 14], [Medina/Mohri 14], [Cesa-Bianchi/Gentile/Mansour 15], [Dughmi/Han/Nisan 15], [Huang/Mansour/Roughgarden 15], [Devanur/Huang/Psomas 15], ...

Theorem: [Haussler 92], [Anthony/Bartlett 99] if C has low pseudodimension, then it is easy to learn from data the best mechanism in C.

- obtain $s = \tilde{\Omega}(H^2 \varepsilon^{-2} d)$ samples $\mathbf{v}_1, \dots, \mathbf{v}_s$ from F, where d = pseudodimension of C, valuations in [0,H]
- let M* = mechanism of C with maximum total revenue on the samples

Guarantee: with high probability, expected revenue of M^* (w.r.t. F) within ε of optimal mechanism in C.

Pseudodimension: Definition

[Pollard 84]

Let F = set of real-valued functions on domain X.

(for us, X = valuation profiles, F = mechanisms, range = revenue)

F shatters a finite subset $S = \{v_1, ..., v_s\}$ of X if:

- there exist real-valued thresholds t_1, \dots, t_s such that:
- for every subset T of S
- there exists a function f in F such that:

 $f(\mathbf{v}_i) \ge t_i \iff \mathbf{v}_i \text{ in } T$

Pseudodimension: Example

Let C = second-price single-item auctions with bidderspecific reserves.

Claim: C can only shatter a subset $S = \{v_1, ..., v_s\}$ if $s = O(n \log n)$. (hence pseudodimension $O(n \log n)$)

Pseudodimension: Example

Let C = second-price single-item auctions with bidderspecific reserves.

Claim: C can only shatter a subset $S = \{v_1, ..., v_s\}$ if $s = O(n \log n)$. (hence pseudodimension $O(n \log n)$)

Proof sketch: Fix S.

- Bucket auctions of C according to relative ordering of the n reserve prices with the ns numbers in S. (#buckets ≈ (ns)ⁿ)
- Within a bucket, allocation is constant, revenue varies in simple way => at most sⁿ distinct "labellings" of S.
- Since need 2^s labellings to shatter S, $s = O(n \log n)$.

Consequences

Meta-theorem: simple vs. optimal results automatically extend from known distributions to unknown distributions with a polynomial number of samples.

Examples:

• Vickrey auction, anonymous reserve O(1)

 $O(n \log n)$

 $O(k \log k)$

- Vickrey auction, bidder-specific reserves
- grand bundling/selling items separately

Guarantee: with $s = \tilde{\Omega}(H^2 \varepsilon^{-2} d)$, with high probability, expected revenue of M^{*} (w.r.t. F) within ε of optimal mechanism in C.

Simplicity-Optimality Trade-Offs

Simple vs. Optimal Theorem: in single-parameter settings, independent but not identical private valuations:

expected revenue of VCG with monopoly reserves

 \geq 1/2 •(OPT expected revenue)

Simplicity-Optimality Trade-Offs

Simple vs. Optimal Theorem: in single-parameter settings, independent but not identical private valuations:

expected revenue of VCG with monopoly reserves

 $\frac{1}{2} \cdot (\text{OPT expected revenue})$

t-Level Auctions: can use t reserves per bidder.

• winner = bidder clearing max # of reserves, tiebreak by value

Simplicity-Optimality Trade-Offs

Simple vs. Optimal Theorem: in single-parameter settings, independent but not identical private valuations:

expected revenue of VCG \geq with monopoly reserves

 $\frac{1}{2}$ •(OPT expected revenue)

t-Level Auctions: can use t reserves per bidder.

• winner = bidder clearing max # of reserves, tiebreak by value

Theorem: (i) pseudodimension = O(nt log nt); (ii) to get a (1- ε)-approximation, enough to take t \approx H/ ε [for matroids] and t \approx Hn²/ ε [in general]

Summary

- pseudodimension = classical definition from statistical learning theory, appealing way to quantify the "simplicity" of a family of mechanisms
- analytically tractable to upper bound in many cases
- simple vs. optimal results extend from known distributions to unknown distributions with a polynomial number of samples

Wide open: incorporate computational complexity issues (cf., computational learning theory).