
To slash or not to slash?

New paper with @ebudish @AndrewLewisPye on provable slashing guarantees (both possibility
and impossibility results), details below
1/25

Consider the bummer scenario in which an attacker acquires enough resources to interfere with
your blockchain protocol (e.g., 51% of the hashrate of a Bitcoin-like protocol or 34% of the stake
of an Ethereum-like protocol). Is it game over?
2/25

Ideally, a protocol would be able to "fight back" against an attacker that uses its power to violate
the protocol's consistency (e.g., rolling back transactions to double-spend), and could do so
without collateral damage to honest participants
3/25

For example, this is one of the primary aspirations of slashing in a proof-of-stake protocol like
Ethereum
4/25

We define the EAAC property (expensive to attack in the absence of collapse) to capture this
idea of carrying out targeted punishment against an attacker responsible for a consistency
violation (whether by PoS slashing or other means)
5/25

The goal of our paper is to map out fundamental possibility and impossibility results about
EAAC protocols. Which types of protocols are capable of achieving the EAAC property, and
under what assumptions?
6/25

While our focus is on foundations rather than specific protocols, we highlight below several
implications for practical blockchain protocol design (e.g., making precise the common belief
that the merge has increased Ethereum’s economic security)
7/25

Result 1: You can't get EAAC in the dynamically available setting (in which non-malicious players
might or might not be online): once an adversary is big enough to cause a consistency violation,
it is big enough to evade targeted punishment
8/25

This result rules out non-trivial EAAC guarantees for all typical longest-chain protocols (be they
proof-of-work protocols like Bitcoin or proof-of-stake protocols such as Ouroboros)
9/25

Intuition for proof:
10/25

Implications for Ethereum and other PoS protocols:
11/25

Result 2: You can't get EAAC in the partially synchronous setting (in which the communication
network may be periodically unreliable, e.g due to DoS attacks): once an adversary is big
enough to cause a consistency violation, it is big enough to evade targeted punishment
12/25

In particular, this result implies that slashing in a proof-of-stake protocol cannot achieve its
intended purpose if message delays cannot be bounded a priori
13/25

Intuition for proof:
14/25

Variation of result 2: even if there *is* a worst-case bound D* on message delay (which should
apply even when the protocol is under attack), to have any hope of EAAC, withdraw delays (e.g.,
the cooldown period after unstaking) must be proportional to D*
15/25

Implications for Ethereum and other PoS protocols:
16/25

Recap: to get EAAC, it's necessary to work in the quasi-permissionless setting (where honest
players are assumed to be online) and have some worst-case bound on message delays. Are
these assumptions also sufficient?
17/25

Answer: yes! EAAC is achievable by a PoS protocol with slashing, provided the attacker controls
less than *two-thirds* of the overall stake
18/25

More generally, our protocol operates at a speed proportional to the typical message delay D
(order of seconds) when there are no consistency violations and carries out slashing at a speed
proportional to worst-case (perhaps out-of-band) message delay D* (order of days)
19/25

How does the protocol work? Achieving EAAC requires addressing three challenges:
20/25

We address the first challenge by starting from a PBFT-style protocol that is accountable, namely
Tendermint (which we extend to a quasi-permissionless PoS protocol)
21/25

We address the second challenge by adding a third stage of voting in each view (we prove that
the usual two stages are inadequate)
22/25

We address the third challenge by having honest players attempt to reach consensus on an
updated genesis block (in which slashing has been carried out) using a variant of the Dolev-
Strong protocol

23/25

Comparison between our protocol and the Ethereum protocol:
24/25

Link to the full paper: https://arxiv.org/abs/2405.09173
As always, questions and comments welcome!
25/25

