
CS359D, Winter 2007

Some Homework Problems (Under Construction)

Some Gap Reductions

Problem 1. Let MAX 3SAT(c) denote the MAX 3SAT problem restricted to formulas in which each
variable occurs at most c times. In lecture, we saw that there is a (sufficiently large) constant c such that
MAX 3SAT(c) is NP-hard to approximate to within some constant. Use this fact as a starting point to
minimize c—i.e., prove that MAX 3SAT(c) is NP-hard to approximate to within some constant, where c is
as small as possible.

Problem 2. Assuming the PCP Theorem, prove that the Vertex Cover problem is NP-hard to approximate
to within some constant, even in bounded-degree graphs. How small can you make the degree bound?

Problem 3. Assuming the PCP Theorem, prove that the Steiner Tree problem is NP-hard to approximate
to within some constant. Can you prove this even for instances that are complete graphs in which all edge
costs are either 1 or 2?

[Hint: Reduce from Vertex Cover in bounded-degree graphs. Given a VC instance G = (V,E), construct a
Steiner tree instance on the vertex set V ∪ E.]

Problem 4. Assume Feige’s hardness result for Set Cover: unless NP ⊆ DTIME(nO(log log n)), there is no
(1− δ) ln n-approximation algorithm for Unweighted Set Cover (where δ > 0 is any fixed constant).

Use this result to prove the following: unless NP ⊆ DTIME(nO(log log n)), there is no (1 − 1/e + ε)-
approximation algorithm for Unweighted Set Coverage (where ε > 0 is any fixed constant). (Recall that
in the Set Coverage problem you are given a set system and a budget k, and the goal is to cover as many
elements as possible using at most k sets.)

Problem 5. Assume Feige’s hardness result to prove the following: unless NP ⊆ DTIME(nO(log log n)),
there is no (1 + 2/e− ε)-approximation algorithm for metric k-median (where ε > 0 is any fixed constant).
(Recall that in metric k median you are given facilities F , demands D, a metric c on F ∪D, and costs f of
facilities. The goal is to open at most k facilities A ⊆ F and assign each demand j ∈ D to an open facility
i(j) ∈ A to minimize the sum of the facility costs and assignment costs:

∑
i∈A fi +

∑
j∈D ci(j),j .)

Variants on the PCP Theorem and its Proof

Problem 1. Recall in our analysis of Gap Amplification (and the Powering step in particular), we proved
that our procedure doubled the satisfiability gap provided the gap was less than some constant. This problem
shows that the analysis is tight, in the sense that for large gaps the Powering procedure need not increase
the gap by a multiplicative factor.

(a) Assume that for infinitely many constants d, there exist infinitely many d-regular graphs with n vertices,
second eigenvalue (in magnitude, of the adjacency matrix) at most 2

√
d, and girth at least 2

3 logd n.
(This is indeed the case.) Give each edge of such a graph an inequality constraint (over the Boolean
alphabet, say). Prove that the satisfiability gap of such a constraint graph is at least 1/2−O(

√
1/d).

[Hint: Look up the “expander mixing lemma”, e.g. in Wikipedia.]

(b) On the other hand, show that for every fixed constant t, if n is large enough, then the output G′ of
the Powering step has satisfiability gap at most 1/2.
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Some Expander Problems

Problem 1. This problem explores expander-based error reduction. Let G be a d-regular graph on n
vertices, where d is an absolute constant. Let A be its adjacency matrix, and let λ < d be the second-largest
magnitude of one of its eigenvalues. Let Ã = A/d denote the normalized adjacency matrix.

Let B ⊆ V denote a set of αn (“bad”) vertices (where α ∈ (0, 1)). Note that if we independently chose t
random vertices of G (with replacement), then the probability that all of them lie in B is precisely αt. Let γ
denote the probability that a t-step random walk in G (with the start state chosen uniformly at random)
only visits vertices of B. We aim to show a comparable bound for γ, provided λ is bounded away from d.

(a) Let P denote the V ×V projection matrix such that Px zeroes out the coordinates of x corresponding
to V \B. Prove that γ = ‖(PA)tPx0‖1, where x0 denotes the uniform probability distribution and ‖·‖1
denotes the `1 norm.

(b) The 2-norm of a matrix C is defined as the maximum factor by which C can elongate a vector (with re-
spect to the Euclidean norm): ‖C‖2 = maxy 6=0 ‖Cy‖2/‖y‖2. Prove that γ ≤ α‖(PA)tP‖2 ≤ (‖AP‖2)

t.

(c) Prove that ‖AP‖2 ≤
√

α + (λ/d)2 and conclude that γ ≤ (α + (λ/d)2)t/2. (Hint: Review the proof of
the Key Expander Lemma used in the analysis of the Powering step.) [Bonus: prove that ‖PAP‖2 ≤
λ/d + α(1− λ/d) and use this to establish the sharper upper bound of γ ≤ α(λ/d + α(1− λ/d)t).]

(d) Application to RP error reduction: suppose we have an RP algorithm—that is, on NO instances the
algorithm always correctly rejects, while for YES instances the algorithm accepts with probability at
least 1/4. Assume that this algorithm uses r random bits. Note that naive serial repetition reduces
the error probability to (3/4)t while using rt random bits. Show that the same error probability can
be achieved using only O(r + t) random bits. [Remember that while d − λ = Ω(1), it might be an
extremely small constant.]

(e) Combine part (c) with the FGLSS reduction. By how much can you improve the result shown in class
(both in terms of the hardness factor and in the complexity assumption required)?

Problem 2. Prove that for a sufficiently large constant d, there exists a d-regular graph on d4 vertices such
that the second-largest magnitude of an eigenvalue of its adjacency matrix is at most d/8.

Problem 3. Suppose G is an expander on cn vertices for some c > 1 (according to either the combinatorial
or algebraic definition). But what you really want is an expander on n vertices. Can you obtain one easily
from G, for example, by contracting some of its edges? Quantify the impact of your proposed solution on
the expansion of graph.

Some Fourier Analysis Problems

Problem 1. Give an alternative proof of the soundness of the BLR linearity test using the following ideas.
Let f be a Boolean function defined on `-bit strings. Suppose the BLR linearity test rejects with probability
at most δ for δ sufficiently small. Obtain the function g from f as follows: for every `-bit string x, g(x) is
the most frequent result of the computation f(x+ y)− f(x) over all possibly shifts y. Prove that this works,
in the sense that g is a uniquely defined linear function that is 2δ-close to f .
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