
CS359D, Winter 2007

PCP Theorem Quick Reference Sheet

First Step: The PCP Theorem reduces to showing that MAX CG (given a constraint graph satisfiability
problem G = (V,E) over a constant-size alphabet Σ, maximize the number of satisfied clauses/edges) is hard
to approximate to within some constant.

[Recall proof: the PCP verifier, after preprocessing the input x of the NP-complete language L to transform
it into a hard MAX CG instance, and given a purported proof in the form of a variable assignment for this
CG instance, checks the validity of a random edge constraint. O(1) repeated trials gives soundness 1/2.]

Gap Amplification Overview: Suffices to design a reduction that maps a CG instance G to a CG
instance G′ (over the same alphabet) that satisfies three properties: (1) if G is satisfiable, so is G′; (2) if G
has gap γ (i.e., every assignment leaves at least a γ fraction of the constraints unsatisfied), then G′ has gap
at least 2γ (unless it already has a gap exceeding some fixed constant, in which case it remains at least this
constant); (3) the size of G′ is at most a constant factor times that of G.

[Recall proof: to prove that MAX CG is NP-hard to approximate to within some constant, start with an
instance of 3-Coloring (which either has zero gap or has gap at least 1/m, where m is the number of edges),
and apply Gap Amplification Θ(log m) times. Note this would not yield a poly-time reduction if we relaxed
constraint (3) above to allow a super-constant blow-up in size each iteration.]

Gap Amplification in 4 Steps:

(1) Degree-Reduce(G): The goal is to map the CG instance G to another CG instance G′ (over the
same alphabet) such that:

(1a) G′ is a d1-regular graph for some absolute constant d1.

(1b) gap(G′) ≥ gap(G)/c1, where c1 is some absolute constant.

(Recall the proof is basically just the Expander Replacement Lemma with equality edge constraints.)

(2) Expanderize(G): The goal is to map the CG instance G (assumed d1-regular) to another CG in-
stance G′ (over the same alphabet) such that:

(2a) G′ is a d2-regular expander graph for some absolute constant d2. (I.e., the second eigenvalue of
its Laplacian should be at least some absolute constant λ > 0.)

(2b) gap(G′) ≥ gap(G)/c2, where c2 is some absolute constant.

(Recall the proof is to just to throw in a constant-degree regular expander with trivial edge constraints.)

(3) Powering(G, t): Given an arbitrarily large constant t, the goal is to map the CG instance G = (V,E, Σ)
(assumed to be a d2-regular λ-expander) to another CG instance G′ = (V ′, E′,Σ′) such that:

(3a) gap(G′) ≥ t
c3

min{gap(G), 1
t }, where c3 is some absolute constant (independent of t).

Side effects: screws up degree, expansion, and blows up the alphabet (from Σ to Σ′).

(4) Alphabet-Reduce(G): The goal is to map the CG instance G = (V,E, Σ) to another CG in-
stance G′ = (V ′, E′,Σ′) such that:

(4a) |Σ′| = 64.

(4b) gap(G′) ≥ gap(G)/c4, where c4 is some absolute constant. In particular, c4 should be independent
of |Σ|, and therefore independent of the constant t chosen in the Powering step.

1



In addition to the listed goals, all four subroutines map satisfiable CG instances to satisfiable CG instances,
and blow up the size of the given CG instance by at most a constant factor. (In the Powering and Alphabet-
Reduce steps, this blow-up is allowed to depend on the constant t chosen in the former step in an arbitrary
way.)

[Note these four subroutines implement Gap Amplification—just compose them, taking t = 2c1c2c3c4 in the
Powering step.]

The (Untruncated) Amplified Verifier for the Powering Step:

(0) Given: a constant t, a CG instance G = (V,E, Σ) (assumed to be a d2-regular λ-expander), and a
proof σ in the following format: for each v ∈ V , σv assigns a character σv(w) of Σ to each vertex w
within t hops of v in G. (We view σv as a “character” in the polynomially larger alphabet Σ′.)

(1) Choose a vertex a ∈ V uniformly at random.

(2) Perform an “A-walk” from a, defined as follows:

(2a) Follow a random outgoing edge (v, w) from the current vertex v.

(2b) Stop the random walk and go to Step (3) with probability 1/t; otherwise return to Step (2a).

(3) Let P denote the walk taken, and let b denote its final endpoint. Query a and b to get σa and σb.

(4) For each (oriented) step (v, w) of P , perform the following test:

(4a) If σa(v) and σb(w) are both defined (i.e., distG(a, v), distG(b, w) ≤ t), and if the assignment
(σa(v), σb(w)) fails to satisfy the constraint (v, w) of G, then REJECT.

(5) ACCEPT if all steps of P pass the test in Step (4a).

[Notes: this amplified verifier issues two queries over the larger alphabet Σ′. Also, the “expected number of
random bits” required is log |E|+ O(1) since d2 and t are constants.]

Assignment Testers: A q-query Assignment Tester (AT), with gap β > 0 and alphabet Σ0, is a “compiler”
with the following properties. It accepts a constraint—for concreteness, given by a Boolean circuit C over
a set X of Boolean variables—and outputs a system Ψ of q-ary constraints over X ∪ Y . Here Y is a set of
auxiliary variables defined over the alphabet Σ0. By definition, it satisfies two conditions:

(1) If a : X → {0, 1} is an assignment that satisfies the given predicate (i.e., C(a) = 1), then there is a
satisfying extension b : Y → Σ0 (i.e., a ∪ b satisfies all of the constraints of Ψ).

(2) If a is δ-far (i.e., has Hamming distance greater than δ|X|) from every satisfying assignment for C,
then for every extension b : Y → Σ0, a ∪ b violates at least a βδ fraction of Ψ’s constraints.

The circuit C is not assumed to be poly-size in X; and Ψ need not be poly-size in X or C.

2


