
CS364B: Frontiers in Mechanism Design
Lecture #11: Undominated Implementations and the

Shrinking Auction∗

Tim Roughgarden†

February 12, 2014

1 Introduction to Part III

Recall the three properties we’ve been focused on so far.

1. (Incentive guarantee.) DSIC or EPIC.

2. (Performance guarantee.) Assuming honest behavior, the auction should output
an allocation with (approximately) optimal welfare.

3. (Tractability guarantee.) The auction should be “simple” or at least terminate in
a reasonable amount of time.

Part I of the course focused on special cases where we can achieve all three properties
— gross substitutes (GS) valuations and special cases thereof. In Part II of the course, we
focused on more general valuation classes in which the exact version of the second property
is already incompatible with the third (assuming P 6= NP). We focused further on special
cases where, ignoring incentive constraints, a constant-factor approximation to the optimal
welfare can be computed in polynomial time. We’ve seem some pleasing positive results:
when there is a logarithmic supply of every item or with coverage valuations, we designed
MIDR allocation rules (and hence DSIC mechanisms) that have best-possible approximation
guarantees (assuming P 6= NP), albeit through quite complex designs.1 For general submod-
ular valuations (which subsume coverage valuations), the situation is different and there are

∗ c©2014, Tim Roughgarden. Thanks to Georgios Tsaousoglou for a correction to an earlier draft of these
notes.
†Department of Computer Science, Stanford University, 462 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.
1Let’s recall the technical fine print. The result for logarithmic supply assumes that each bidder only

wants one copy of each item and that the valuations are given as black boxes that support demand queries.
The approximation guarantee is (1−ε) provided the supply is at least cε−2 logm for some (modest) constant c.

1

impossibility results that rule out analogous DSIC approximation guarantees. Both Parts I
and II adopt the first and third properties above as hard constraints, and then explore what
is possible for the second property.

The complexity and limited reach of polynomial-time DSIC mechanisms motivate com-
promising on the incentive guarantee, in the hopes of designing simpler mechanisms with
stronger welfare guarantees. This is the focus of Part III of the course (Lectures #11–13).

What is a principled way to relax the DSIC incentive guarantee? The traditional answer,
and the one we study is Lectures #12 and #13, is to require “Bayes-Nash incentive compat-
ibility.” We’ll define this precisely next lecture; for now we only mention that the definition
requires a common prior over bidders’ valuations.

But first, in this lecture, we take a detour into a compellingly mild relaxation of the
DSIC definition, for which few positive or negative results are currently known. (Thus, this
is an intriguing direction for future research.) To explain the rough idea, recall the DSIC
condition guarantees that each player has a “foolproof” (i.e., dominant) strategy, and the
assumption is that players play dominant strategies when they exist. In this lecture, we
design a mechanism without any dominant strategies, and assume only that bidders don’t
play “stupid” (i.e., dominated) strategies. We lose the ability to predict exactly what players
will do, but we’ll identify a mechanism in which the welfare is near-optimal no matter what
(non-stupid) strategies the players choose.

2 Single-Valued, Multi-Minded Bidders

This lecture, we consider bidders who have a private valuation vi ∈ R for getting any bundle
from a desired collection {Ai`} of bundles.

Scenario #9:

• A set U of m non-identical items.

• Each bidder i has a private value vi for each of a collection {Ai`} of private bundles.
Thus, the full valuation is

vi(S) =

{
vi if S ⊇ Ai` for some Ai`

0 otherwise.

Importantly, we assume that both the value vi and the sets {Ai`} are private to bidder
i. This is reminiscent of unit-demand valuations, except with bundles instead of individual
items, and with a common value for all desired bundles. This valuation class is clearly
restricted, though one can imagine scenarios where it is relevant — for example, if a firm has
value vi for getting a project completed, and the Ai`’s are teams of workers that collectively

The approximation guarantee for coverage valuations is 1− 1
e ≈ 0.63. This guarantee extends to valuations

that are convex combinations of gross substitutes valuations, assuming that such valuations are given as
black boxes that support a randomized version of a value oracle.

2

possess the skills needed for the project. Another example is where U represents the edges
of a network, a bidder has a private origin si and destination ti, the bidder has value vi
for connecting its origin to its destination, and the Ai`’s are the si-ti paths of the network.
Primarily, though, we focus on this scenario to illustrate an interesting relaxation of the
DSIC condition.

We assume throughout this lecture that all private bundles Ai` have size at most a publicly
known parameter d. The underlying welfare-maximization problem is NP -hard as long as
d ≥ 3. (It can be solved in polynomial time for d = 2, see Exercises.) Both the mechanism
description and its performance will depend on d. For example, you might want to keep in
mind the case where d = 6 and most bundles range in size from 1 to 4. We also assume
that all of the private values vi for desired sets are bounded below by some publicly known
constant (say 1).

3 Some Special Cases

To get a feel for Scenario #9, let’s examine some special cases. First suppose that all desired
bundles {Ai`} are publicly known, and only the values vi for desired bundles are private. We
then have a single-parameter environment (CS364A, Lecture #4). Consider the allocation
rule that uses the greedy algorithm:

1. Go through the bidders one-by-one, from highest to lowest bid.

2. Upon reaching bidder i, if for some desired bundle Ai` all items of Ai` are still available,
award bidder i an arbitrary such bundle Ai`.

This greedy algorithm clearly runs in polynomial time. Because each accepted bidder can
only “block” d other bidders, the algorithm outputs an allocation with welfare at least 1/d
times the maximum possible (see Exercises for details). A reduction from the Independent
Set problem in d-regular graphs shows that no polynomial-time algorithm has approxima-
tion ratio o(d/ log d), assuming P 6= NP [2]. The allocation rule is monotone (Exercises),
and hence Myerson’s Lemma (CS364A, Lecture #3) can be used to extend it to a DSIC
mechanism.

For a second special case, suppose that each bidder i has only one desired bundle Ai

(i.e., is “single-minded”) but that this bundle is private. We again consider the rule that
computes an allocation using the greedy algorithm above. The environment is no longer
single-parameter, so we can’t use Myerson’s Lemma to prove that the rule yields a DSIC
mechanism. Nevertheless, one can prove directly that natural payments turn the greedy
allocation rule into a DSIC mechanism (see Exercises) [3]. Of course, the rule continues to
provide a 1

d
-approximation of the optimal welfare.

3

4 The Shrinking Mechanism

4.1 Description of Mechanism

We now describe an indirect mechanism, the “shrinking mechanism,” for Scenario #9. After
describing the mechanisms, we discuss some of its properties and go through a detailed
example. We then make precise our behavioral assumptions, and prove an approximation
guarantee for the mechanism under these assumptions.

Shrinking Mechanism [1]

1. Initialize bi = 1 for every bidder i.

[The current bid of bidder i; only goes up as the auction proceeds. Recall we assume
vi ≥ 1 for every i.]

2. Initialize Si = U for every bidder i.

[The items that i currently wants; only shrinks as the auction proceeds.]

3. Initialize old = ∅, losers = ∅.
[Two sets of bidders.]

4. While there is a bidder i /∈ old ∪ losers:

[We simulate the greedy algorithm on the bidders not in losers.]

(a) new = ∅.
(b) Iterate through the bidders i /∈ losers, from highest to lowest bid bi:

i. If |Si| ≤ d and Si is feasible — i.e., disjoint from ∪h∈newSh:

A. Add i to new.

ii. Else ask bidder i to choose between two options:

A. Option 1: Shrink the set Si to some Ti ⊂ Si with |Ti| ≤ d and Ti
disjoint from ∪h∈newSh. In this case:

• Si ← Ti.

• Add i to new.

B. Option 2: Pass (Si remains the same).

(c) If
∑

i∈new bi >
∑

i∈old bi:

[Ensure monotonicity.]

i. old← new.

(d) For each i /∈ old ∪ losers, ask bidder i to choose between two options:

i. Option 1: Bid increase: bi ← 2bi.

ii. Option 2: Drop out: add i to losers.

4

5. Final allocation: Si to each bidder i ∈ old, ∅ to all other bidders.

6. Final payments: bi to each bidder i ∈ old, 0 to all other bidders.

4.2 Discussion

Here are several comments to aid understanding the auction:

1. The point of the main while loop (line 4) is to run the greedy algorithm on the bidders
that haven’t yet dropped out (i.e., i /∈ losers) with respect to the current bids b and
the current sets {Si}i/∈losers. This isn’t quite what happens, since the auction skips
over all bidders that haven’t shrunk their sets set (i.e., Si = U). This is because the
greedy algorithm only has a good approximation guarantee when all bundles have size
at most d. Thus line 4 runs the greedy algorithm on the set of bidders i /∈ losers
that have shrunk their set (equivalently, that have |Si| ≤ d). This property is used in
Lemma 5.4.

2. The allocation old is always a feasible allocation.

3. Line 4c ensures that the sum of the bids in the computed allocation can only go up
each iteration. (Omitting this line can destroy this monotonicity; see the Exercises.)

This monotonicity property is used in the proof of Lemma 5.4, though step 4c does
complicate the proof of Lemma 5.2.

4. From a player’s perspective, it is not easy to figure out how play in the shrinking
auction. For example, suppose that player i’s set Si currently has size 6 and is the
disjoint union of three bundles that i desires. In line 4(b)ii, should i shrink its set or
pass (and double its bid)? If it shrinks, which subset should it shrink Si to?

For this reason, we cannot hope to have a sharp prediction about what happens in the
shrinking action. Nevertheless, we prove in Section 5 that all “reasonable” outcomes
of the shrinking auction have near-optimal welfare.

4.3 An Example

Next we run the shrinking auction on a concrete example.

Example 4.1 Suppose there are n = 4 bidders and a set U = {1, 2, 3, 4} of 4 goods. Suppose
d = 2 and each bidder has only one desired bundle of two goods, as shown in Figure 1. The
private values are v1 = 6, v2 = 5, v3 = 12, and v4 = 15. In what follows, we assume that the
shrinking auction always breaks ties in favor of lower-indexed players.

Initially all bids bi are 1 and all sets Si are U . The auction asks the first bidder whether
or not it wants to shrink (to a set of at most d = 2 items) or pass. Assume for the example
that the bidder shrinks its set S1 from U to the bundle {1, 2} of items that it actually wants.
Intuitively, this is reasonable because the bidder is only giving up on items that it doesn’t

5

v1 = 6 v3 = 12

v2 = 5

v4 = 15

Figure 1: Example of an instance of the shrinking auction.

want under any circumstances. Next, the second bidder is asked whether or not it wants to
shrink or pass. The only way the bidder can shrink and be feasible with the first bidder is to
set Si to {3, 4}. This bundle has no value for the bidder (it only wants {2, 4}), so we assume
that the second bidder passes instead. When the third bidder is asked to shrink or pass, it
may as well shrink to the set S3 = {3, 4} of items that it actually wants. The fourth bidder
will certainly choose to pass over shrinking (necessarily to ∅, since all items are spoken for).
This completes the allocation phase of the first iteration, at which point new = {1, 3}. This
allocation certainly has higher sum of bids than old = ∅, so we save it in old. Bidders 2
and 4 are asked to choose between dropping out and doubling their bids. Since their values
both exceed 2, it makes sense for them to stay in the auction, now with b2 = b4 = 2.

In the second iteration of the while loop, the players are approached in the order 2, 4, 1, 3.
Bidder 2 is asked to either shrink its set (from U to a set of at most d = 2 items) or pass;
it makes sense for bidder 2 to shrink its set to the items {1, 3} that it actually wants.
Similarly, it makes sense for bidder 4 to shrink its set to {2, 4}. Bidders 1 and 3 will pass
rather than shrink (to the empty set). This allocation phase concludes with new = {2, 4}
and old = {1, 3}. Since the sum of the bids in the former (namely, 4) is more than in the
latter (2), the allocation new is saved. Since bidders 1 and 3 have values more than 2, both
will presumably choose to double their bids rather than drop out.

In the third iteration of the while loop, bidders 1 and 3 will be chosen (assuming bidder
2 passes rather than shrinks, as it should), so new = {1, 3} and old = {2, 4}. Note that
both allocations have sum of bids 4. Since the new allocation is not strictly bigger than the
old one, the new one discarded and the old one retained. Bidders 1 and 3 are again asked to
either double their bids (to 4) or drop out. Since bidders 1 and 3 both have valuation bigger
than 4, both will presumably agree to the bid doubling.

In the fourth iteration of the while loop, bidders 1 and 3 are chosen. Now the sum of bids
in new (namely, 8) is more than in old (4), so the allocation {1, 3} is retained. Bidders 2
and 4 are asked either double their bid (to 4) or drop out; since both have value more than
4, both should agree to the doubling.

In the fifth iteration, bidders 1 and 3 are chosen again (assuming 2 passes rather than
shrinks, as it should) so bidders 2 and 4 are asked again to double their bids. This time, we
expect bidder 2 to drop out rather than double its bid to 8 (more than its valuation of 5).
Bidder 4 should agree to the bid doubling.

In the sixth iteration, the bidders not in losers are {1, 3, 4} and their current bids are
b1 = b3 = 4 and b4 = 8. Bidder 4 will be chosen first, and bidders 1 and 3 will pass rather

6

than shrink. Since the new allocation of {4} does not have a strictly larger sum of bids than
the old one {1, 3}, it will be discarded, and bidder 4 will be asked again to either double its
bid (to 16) or drop out. Since bidder 4’s valuation is only 15, we expect it to drop out at
this point. At this point every bidder is in either old = {1, 3} or losers = {2, 4}, so the
shrinking auction terminates. Bidders 1 and 3 get the bundles {1, 2} and {3, 4}, respectively,
each for a price of 4. This allocation has welfare 18; the optimal welfare is 20.

4.4 Behavioral Assumptions

In Example 4.1, we frequently assumed that bidders behaved in the “obvious” way. We next
formalize a set of behavioral assumptions that are sufficient to guarantee near-optimality of
the allocation computed by the shrinking auction.

(B1) Every bidder i drops out before its bid bi exceeds its value vi. The justification for
this assumption is that if bidder i stays in the auction once bi > vi, it cannot receive
positive utility — it either drops out later or receives a bundle at a price of at least
bi > vi.

(B2) Conversely, no bidder i will drop out until it is asked to double its bid to a value at
least vi. The justification for this assumption is that dropping out guarantees zero
utility, while staying in the auction longer can only present opportunities to obtain
nonnegative utility (as long as assumption (B1) is followed).

(B3) In line 4(b)ii of the shrinking auction, suppose (i) bi > vi/2; (ii) Si is infeasible (either
|Si| > d or Si intersects with some Sj with j ∈ new); and (iii) there is a set Ti ⊂ Si

such that i has value vi for Ti and Ti is feasible. Then bidder i will shrink its set to
some such Ti (i.e., will not pass).2 To justify this assumption, suppose (i)–(iii) hold.
If i passes, then at the end of the current iteration i will be asked to double its bid.
Since (i) holds and we are assuming (B1), i will drop out and receive zero utility. If i
shrinks, on the other hand, it will never receive negative utility (assuming (B1)) and
might receive positive utility (by (iii)).

(B4) No bidder i will ever shrink its set Si to a set of items for which it has no value. Such an
action would result in i either dropping out later in the auction or receiving a worthless
bundle for a positive price, leading to negative utility.

We trust that (B1)–(B4) are evidently reasonable assumptions. This intuition can also be
made precise: for every strategy σ of bidder i that fails one of these assumptions, there is
another strategy σ′ that dominates σ and that does satisfy (B1)–(B4).3 In other words,
all undominated strategies satisfy (B1)–(B4). Moreover, every strategy σ that fails one of

2We are implicitly assuming that each bidder i can compute such a set Ti. This can be done in polynomial
time if, for example, each bidder is only interested in a polynomial number of different bundles Ai`.

3That is, no matter what strategies the other bidders use, i’s utility under σ′ is at least that under σ.
Also, there exist strategies for the other bidders such that i’s utility is strictly higher under σ′ then under σ.

7

(B1)–(B4) is “obviously dominated” — it is easy to compute a dominating strategy σ′ from
σ.4

5 Analysis of Shrinking Auction

We now analyze the welfare achieved by the shrinking auction under our behavioral as-
sumptions (B1)–(B4).5 Recall from Section 4.2 that bidders have no dominant strategies,
and a wide range of auction outcomes are possible under these assumptions. The following
guarantees apply to every outcome that can arise under these assumptions.

Recall our assumption that all vi’s are at least some publicly known positive value,
which we’re taking to be 1 for simplicity. The following welfare guarantee also depends on
vmax = maxn

i=1 vi; vmax does not need to be publicly known.

Theorem 5.1 Under assumptions (B1)–(B4), the welfare of the allocation computed by the
shrinking auction is at least an Ω(1/(d log2 vmax)) fraction of the maximum possible.

Should you be impressed by Theorem 5.1? It depends. Without incentive constraints,
the greedy algorithm obtains a 1/d-approximation, and we can’t expect to do much better
with any polynomial-time algorithm or mechanism (Section 3). Theorem 5.1, or at least
our analysis of it, suffers a loss of a further Θ(log2 vmax) factor. This is undesirable, and it
would be nice to have a mechanism with an approximation factor that depends on d only.
On the other hand, we don’t know how to get an approximation guarantee anywhere close
to that in Theorem 5.1 with a DSIC mechanism. So relaxing the DSIC constraint to an
implementation in undominated strategies seems to give a big win for Scenario #9, at least
with respect to the current state-of-the-art.

We begin with a key lemma that bounds the number of iterations of the shrinking auction.

Lemma 5.2 Under assumption (B1), the shrinking auction terminates after at most 3(dlog2 vmaxe+
1) iterations of the main while loop.

Proof: At the end of every iteration except the last, at least one bidder either drops out or
doubles its bid. Thus, under assumption (B1), the shrinking auction terminates in a finite
number of iterations. Let i denote the last bidder to drop out.6

If the bidder i drops out with Si = U , then it never shrank its set and it was never added
to the set new. It was therefore forced to double its bid every iteration, and so by (B1) it
dropped out after at most dlog2 vmaxe+ 1 iterations. For the rest of the proof, suppose that
bidder i drops outs with Si 6= U . This implies that i shrank its set in some iteration.

4Babaioff et al. [1] highlight this property and for this reason call the shrinking auction an “algorithmic
implementation in undominated strategies.”

5In Example 4.1, we made some additional assumptions, such as bidders 1 and 3 shrinking rather than
passing in the first iteration. The analysis in Section 5 is valid assuming only (B1)–(B4).

6In the edge case where every bidder is allocated at termination, we can apply the following argument to
a bidder i that was not allocated in the penultimate iteration of the auction.

8

Consider first the case where Si intersects Sj for some winning bidder j. Since bidders’
sets only shrink throughout the shrinking auction, the sets of bidders i and j conflicted in
every iteration of the auction. In each iteration, at least one of the two bidders was not
allocated and hence asked to double its bid. Under assumption (B1), this implies an upper
bound of 2(dlog vmaxe+ 1) on the number of iterations.

Finally, suppose that Si 6= U and Si is disjoint from Sj from every winning bidder j. How
could this have happened? This issue lies in step 4c. Before this line, i was either in new
or conflicted with the set Sj of some other bidder j in new. Since i is neither allocated nor
does it conflict with anyone who was allocated, it must be the case that old was chosen over
new. Now rewind the shrinking auction to the iteration t at which the allocation old was
originally computed. Because i is not in this allocation, its set S ′i at iteration t must have
conflicted with the set Sj of some bidder j in the allocation. (By assumption, bidder i has
since shrunk its set from S ′i to Si and no longer conflicts with any bidders in this allocation.)
Since sets only shrink, bidders i and j were in conflict in every iteration up to iteration t.
Thus, by the argument of the previous paragraph, t ≤ 2(dlog vmaxe+ 1). Since the allocation
old was chosen in iteration t and in every subsequent iteration of the auction, and i /∈ old,
i was asked to double its bid in iteration t and every iteration thereafter. Assumption (B1)
then implies that there can be only dlog vmaxe iterations after t, yielding a total iteration
bound of 3(dlog vmaxe+ 1). �

Two more lemmas will yield Theorem 5.1. The high-level idea is to tease apart two
different sources of welfare loss in the shrinking auction. For a fixed valuation profile, let
(S∗1 , . . . , S

∗
n) denote an optimal allocation. The first problem in the shrinking auction is that

the shrunken sets (Ŝ1, . . . , Ŝn) at termination need not contain (S∗1 , . . . , S
∗
n). Thus, even the

best-case allocation with i receiving only items in Ŝi can have sub-optimal welfare. The
second problem is that the shrinking auction only uses a greedy heuristic to compute the
final allocation from the bundles (Ŝ1, . . . , Ŝn). The next two lemmas quantify these two
welfare losses.

Lemma 5.3 Let (S∗1 , . . . , S
∗
n) denote an optimal allocation. Let the shrinking auction ter-

minate with sets (Ŝ1, . . . , Ŝn) after R iterations. Let (T̂1, . . . , T̂n) denote an allocation that
maximizes welfare under the constraint that each bidder i only receives items from its set Ŝi.
Then, under assumption (B4),

n∑
i=1

vi(T̂i) ≥
1

R + 1
·

n∑
i=1

vi(S
∗
i).

Lemma 5.4 Let the shrinking auction terminate with sets (Ŝ1, . . . , Ŝn) after R iterations,
with winning bidders W . Let (T̂1, . . . , T̂n) denote an allocation that maximizes welfare under
the constraint that each bidder i only receives items from its set Ŝi. Then, under assump-
tions (B2) and (B3), ∑

i∈W

vi(Ŝi) ≥
1

2dR
·

n∑
i=1

vi(T̂i). (1)

9

Observe that chaining together Lemmas 5.2–5.4 proves Theorem 5.1. We now provide
the remaining two proofs.

Proof of Lemma 5.3: Let Fr denote the bidders that shrink their set for the first time (from
U to a set Sr

i of at most d items) in iteration r. Let F0 denote the bidders that never shrink
their sets (and hence drop out with Si = U). Note that F0, F1, . . . , FR form a partition of
the bidders.

A key observation is that, for each r = 1, 2, . . . , R, the sets {Sr
i }i∈Fr are disjoint. The

reason is that when a bidder shrinks its set, it must do so to a set that is feasible with
respect to bidders that have already been added to new, and all bidders that previously
shrunk their sets in an iteration already belong to new. Since sets only shrink over time,
{Ŝi}i∈Fr is a collection of disjoint sets for each r ≥ 1. By assumption (B4), vi(Ŝi) = vi for
each i ∈ Fr. Hence,

n∑
i=1

vi(T̂i) ≥
∑
i∈Fr

vi(Ŝi) =
∑
i∈Fr

vi (2)

for every r = 1, 2, 3, . . . , R. Since the bundles in the optimal solution (S∗1 , . . . , S
∗
n) are disjoint

and Ŝi = U for all i ∈ F0, we also have

n∑
i=1

vi(T̂i) ≥
∑
i∈F0

vi(S
∗
i). (3)

Adding the R inequalities (2) and the inequality (3) yields

(R + 1)
n∑

i=1

vi(T̂i) ≥
∑
i∈F0

vi(S
∗
i) +

∑
i/∈F0

vi ≥
n∑

i=1

vi(S
∗
i),

and this implies the lemma. �

Proof of Lemma 5.4: We can assume without loss of generality that |T̂i| ≤ d for every bidder
i. Consider an iteration r of the shrinking auction. The set newr is computed in this
iteration using the current sets Sr

1 , . . . , S
r
n. The key claim is that∑

i∈newr

bri ≥
1

d

∑
i∈Lr

bri , (4)

where Lr is the set of bidders i that drop out in iteration r and that have vi(T̂i) > 0. Intu-
itively, inequality (4) follows from the fact that the greedy algorithm is a 1

d
-approximation.

There are some details in making this precise. As defined, the shrinking auction runs the
greedy algorithm with respect to the Sr

i ’s. More is true.
Assumption (B3) implies that when the shrinking auction reached bidder i ∈ Lr in

iteration r, all bundles that i desires (including T̂i) were blocked by bidders previously
added to newr. Imagine we run the greedy algorithm on the bidders of newr ∪Lr with sets

10

Sr
i for i ∈ newr and sets T̂i for i ∈ Lr. Note that all of these sets have size at most d. On this

instance, the greedy algorithm will terminate with the allocation newr. Since (T̂1, . . . , T̂n)
is a feasible allocation, so is {T̂i}i∈Lr . Since the greedy algorithm is a 1

d
-approximation,

inequality (4) follows.
Since every bidder i ∈ Lr dropped out in iteration r, assumption (B2) implies that

bri ≥ vi/2 for every i ∈ Lr in iteration r and hence (4) gives∑
i∈newr

bri ≥
1

2d

∑
i∈Lr

vi.

The monotonicity of the shrinking auction enforced in line 4c and assumption (B1) imply
that

n∑
i=1

vi(Ŝi) ≥
1

2d

∑
i∈Lr

vi. (5)

Letting L0 denote the bidders that obtain a positive value in both (T̂1, . . . , T̂n) and (Ŝ1, . . . , Ŝn),
we obviously have

n∑
i=1

vi(Ŝi) ≥
∑
i∈L0

vi. (6)

Since L0, . . . , LR are disjoint and ∪Rr=0Lr contains all bidders that obtain positive value in
(T̂1, . . . , T̂n), we can sum (5) over all R iterations and inequality (6) to obtain (1), completing
the proof. �

References

[1] Moshe Babaioff, Ron Lavi, and Elan Pavlov. Single-value combinatorial auctions and
algorithmic implementation in undominated strategies. Journal of the ACM, 56(1), 2009.

[2] Elad Hazan, Shmuel Safra, and Oded Schwartz. On the complexity of approximating
k-set packing. Computational Complexity, 15(1):20–39, 2006.

[3] D. Lehmann, L. I. O’Callaghan, and Y. Shoham. Truth revelation in approximately
efficient combinatorial auctions. Journal of the ACM, 49(5):577–602, 2002.

11

