
CS369E: Communication Complexity
(for Algorithm Designers)

Lecture #2: Lower Bounds for One-Way
Communication: Disjointness, Index, and

Gap-Hamming∗

Tim Roughgarden†

January 15, 2015

1 The Story So Far

Recall from last lecture the simple but useful model of one-way communication complexity.
Alice has an input x ∈ {0, 1}a, Bob has an input y ∈ {0, 1}b, and the goal is to compute
a Boolean function f : {0, 1}a × {0, 1}b → {0, 1} of the joint input (x,y). The players
communicate as in Figure 1: Alice sends a message z to Bob as a function of x only (she
doesn’t know Bob’s input y), and Bob has to decide the function f knowing only z and y (he
doesn’t know Alice’s input x). The one-way communication complexity of f is the smallest
number of bits communicated (in the worst case over (x,y)) of any protocol that computes
f . We’ll sometimes consider deterministic protocols but are interested mostly in randomized
protocols, which we’ll define more formally shortly.

We motivated the one-way communication model through applications to streaming al-
gorithms. Recall the data stream model, where a data stream x1, . . . , xm ∈ U of elements
from a universe of n = |U | elements arrive one by one. The assumption is that there is insuf-
ficient space to store all of the data, but we’d still like to compute useful statistics of it via a
one-pass computation. Last lecture, we showed that very cool and non-trivial positive results
are possible in this model. We presented a slick and low-space (O(ε−2(log n+ logm) log 1

δ
))

streaming algorithm that, with probability at least 1− δ, computes a (1± ε)-approximation
of F2 =

∑
j∈U f

2
j , the skew of the data. (Recall that fj ∈ {0, 1, 2, . . . ,m} is the number

of times that j appears in the stream.) We also mentioned the main idea (details in the

∗ c©2015, Tim Roughgarden.
†Department of Computer Science, Stanford University, 474 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

1

Alice&
input&=&x&

Bob&
input&=&y&

message&z&
decide&f&

Figure 1: A one-way communication protocol. Alice sends a message to Bob that depends
only on her input; Bob makes a decision based on his input and Alice’s message.

homework) for an analogous low-space streaming algorithm that estimates F0, the number
of distinct elements in a data stream.

Low-space streaming algorithms S induce low-communication one-way protocols P , with
the communication used by P equal to the space used by S. Such reductions typically have
the following form. Alice converts her input x to a data stream and feeds it into the assumed
space-s streaming algorithm S. She then sends the memory of S (after processing x) to Bob;
this requires only s bits of communication. Bob then resumes S’s execution at the point that
Alice left off, and feeds a suitable representation of his input y into S. When S terminates, it
has computed some kind of useful function of (x,y) with only s bits of communication. The
point is that lower bounds for one-way communication protocols — which, as we’ll see, we
can actually prove in many cases — imply lower bounds on the space needed by streaming
algorithms.

Last lecture we used without proof the following result.1

Theorem 1.1 The one-way communication complexity of the Fproblem is Ω(n), even for
randomized protocols.

We’ll be more precise about the randomized protocols that we consider in the next section.
Recall that an input of Disjointness is defined by x,y ∈ {0, 1}n, which we view as char-
acteristic vectors of two subsets of {1, 2, . . . , n}, and the output should be “0” is there is an
index i with xi = yi = 1 and “1” otherwise.

We used Theorem 1.1 to prove a few lower bounds on the space required by streaming
algorithms. A simple reduction showed that every streaming algorithm that computes F∞,
the maximum frequency, even approximately and with probability 2/3, needs linear (i.e.,
Ω(min{n,m})) space. This is in sharp contrast to our algorithms for approximating F0 and
F2, which required only logarithmic space. The same reduction proves that, for F0 and F2,
exact computation requires linear space, even if randomization is allowed. A different simple
argument (see the homework) shows that randomization is also essential for our positive
results: every deterministic streaming algorithm that approximates F0 or F2 up to a small
constant factor requires linear space.

1Though we did prove it for the special case of deterministic protocols, using a simple Pigeonhole Principle
argument.

2

In today’s lecture we’ll prove Theorem 1.1, introduce and prove lower bounds for a couple
of other problems that are hard for one-way communication, and prove via reductions some
further space lower bounds for streaming algorithms.

2 Randomized Protocols

There are many different flavors of randomized communication protocols. Before proving
any lower bounds, we need to be crystal clear about exactly which protocols we’re talking
about. The good news is that, for algorithmic applications, we can almost always focus on a
particular type of randomized protocols. By default, we adopt the following four assumptions
and rules of thumb. The common theme behind them is we want to allow as permissible a
class of randomized protocols as possible, to maximize the strength of our lower bounds and
the consequent algorithmic applications.

Public coins. First, unless otherwise noted, we consider public-coin protocols. This
means that, before Alice and Bob ever show up, a deity writes an infinite sequence of perfectly
random bits on a blackboard visible to both Alice and Bob. Alice and Bob can freely use as
many of these random bits as they want — it doesn’t contribute to the communication cost
of the protocol.

The private coins model might seem more natural to the algorithm designer — here,
Alice and Bob just flip their own random coins as needed. Coins flipped by one player are
unknown to the other player unless they are explicitly communicated.2 Note that every
private-coins protocol can be simulated with no loss by a public-coins protocol: for example,
Alice uses the shared random bits 1, 3, 5, etc. as needed, while Bob used the random bits 2,
4, 6, etc.

It turns out that while public-coin protocols are strictly more powerful than private-coin
protocols, for the purposes of this course, the two models have essentially the same behavior.
In any case, our lower bounds will generally apply to public-coin (and hence also private-coin)
protocols.

A second convenient fact about public-coin randomized protocols is that they are equiv-
alent to distributions over deterministic protocols. Once the random bits on the blackboard
have been fixed, the protocol proceeds deterministically. Conversely, every distribution over
deterministic protocols (with rational probabilities) can be implemented via a public-coin
protocol — just use the public coins to choose from the distribution.

Two-sided error. We consider randomized algorithms that are allowed to error with
some probability on every input (x,y), whether f(x,y) = 0 or f(x,y) = 1. A stronger
requirement would be one-sided error — here there are two flavors, one that forbids false
positives (but allows false negatives) and one the forbids false negatives (but allows false
positives). Clearly, lower bounds that apply to protocols with two-sided error are at least as
strong as those for protocols with one-sided error — indeed, the latter lower bounds are often

2Observe that the one-way communication protocols induced by streaming algorithms are private-coin
protocols — random coins flipped during the first half of the data stream are only available to the second
half if they are explicitly stored in memory.

3

much easier to prove (at least for one of the two sides). Note that the one-way protocols
induces by the streaming algorithms in the last lecture are randomized protocols with two-
sided error. There are other problems for which the natural randomized solutions have only
one-sided error.3

Arbitrary constant error probability. A simple but important fact is that all con-
stant error probabilities ε ∈ (0, 1

2
) yield the same communication complexity, up to a constant

factor. The reason is simple: the success probability of a protocol can be boosted through
amplification (i.e., repeated trials).4 In more detail, suppose P uses k bits on communication
and has success at least 51% on every input. Imagine repeating P 10000 times. To preserve
one-way-ness of the protocol, all of the repeated trials need to happen in parallel, with the
public coins providing the necessary 10000 independent random strings. Alice sends 10000
messages to Bob, Bob imagines answering each one — some answers will be “1,” others “0”
— and concludes by reporting the majority vote of the 10000 answers. In expectation 5100
of the trials give the correct answer, and the probability that more than 5000 of them are
correct is big (at least 90%, say). In general, a constant number of trials, followed by a ma-
jority vote, boosts the success probability of a protocol from any constant bigger than 1

2
to

any other constant less than 1. These repeated trials increase the amount of communication
by only a constant factor. See the exercises and the separate notes on Chernoff bounds for
further details.

This argument justifies being sloppy about the exact (constant) error of a two-sided
protocol. For upper bounds, we’ll be content to achieve error 49% — it can be reduced to
an arbitrarily small constant with a constant blow-up in communication. For lower bounds,
we’ll be content to rule out protocols with error %1 — the same communication lower bounds
hold, modulo a constant factor, even for protocols with error 49%.

Worst-case communication. When we speak of the communication used by a ran-
domized protocol, we take the worst case over inputs (x,y) and over the coin flips of the
protocol. So if a protocol uses communication at most k, then Alice always sends at most k
bits to Bob.

This definition seems to go against our guiding rule of being as permissive as possible.
Why not measure only the expected communication used by a protocol, with respect to its
coin flips? This objection is conceptually justified but technically moot — for protocols that
can err, passing to the technically more convenient worst-case measure can only increase the
communication complexity of a problem by a constant factor.

To see this, consider a protocol R that, for every input (x,y), has two-sided error at
most 1/3 (say) and uses at most k bits of communication on average over its coin flips. This
protocol uses at most 10k bits of communication at least 90% of the time — if it used more
than 10k bits more than 10% of the time, its expected communication cost would be more
than k. Now consider the following protocol R′: simulate R for up to 10k steps; if R fails
to terminate, then abort and output an arbitrary answer. The protocol R′ always sends at

3One can also consider “zero-error” randomized protocols, which always output the correct answer but
use a random amount of communication. We won’t need to discuss such protocols in this course.

4We mentioned a similar “median of means” idea last lecture (developed further in the homework), when
we discussed how to reduce the 1

δ factor in the space usage of our streaming algorithms to a factor oflog 1
δ .

4

most 10k bits of communication and has error at most that of R, plus 10% (here, ≈ 43%).
This error probability of R′ can be reduced back down (to 1

3
, or whatever) through repeated

trials, as before.
In light of these four standing assumptions and rules, we can restate Theorem 1.1 as

follows.

Theorem 2.1 Every public-coin randomized protocol for Disjointness that has two-sided
error at most a constant ε ∈ (0, 1

2
) uses Ω(min{n,m}) communication in the worst case (over

inputs and coin flips).

Now that we are clear on the formal statement of our lower bound, how do we prove it?

3 Distributional Complexity

Randomized protocols are much more of a pain to reason about than deterministic protocols.
For example, recall our Pigeonhole Principle-based argument last lecture for deterministic
protocols: if Alice holds an n-bit input and always sends at most n− 1 bits, then there are
distinct inputs x,x′ such that Alice sends the same message z. (For Disjointness, this
ambiguity left Bob in a lurch.) In a randomized protocol where Alice always sends at most
n− 1 bits, Alice can use a different distribution over (n− 1)-bit messages for each of her 2n

inputs x, and the naive argument breaks down. While Pigeonhole Proof-type arguments can
sometimes be pushed through for randomized protocols, this section introduces a different
approach.

Distributional complexity is the main methodology by which one proves lower bounds on
the communication complexity of randomized algorithms. The point is to reduce the goal
to proving lower bounds for deterministic protocols only, with respect to a suitably chosen
input distribution.

Lemma 3.1 (Yao [5]) Let D be a distribution over the space of inputs (x,y) to a com-
munication problem, and ε ∈ (0, 1

2
). Suppose that every deterministic one-way protocol P

with
Pr(x,y)∼D[P wrong on (x,y)] ≤ ε

has communication cost at least k. Then every (public-coin) randomized one-way protocol R
with (two-sided) error at most ε on every input has communication cost at least k.

In the hypothesis of Lemma 3.1, all of the randomness is in the input — P is deterministic,
(x,y) is random. In the conclusion, all of the randomness is in the protocol R — the input
is arbitrary but fixed, while the protocol can flip coins. Not only is Lemma 3.1 extremely
useful, but it is easy to prove.

Proof of Lemma 3.1: Let R be a randomized protocol with communication cost less than k.
Recall that such an R can be written as a distribution over deterministic protocols, call them
P1, P2, . . . , Ps. Recalling that the communication cost of a randomized protocol is defined as

5

the worst-case communication (over both inputs and coin flips), each deterministic protocol
Pi always uses less than k bits of communication. By assumption,

Pr(x,y)∼D[Pi wrong on (x,y)] > ε

for i = 1, 2, . . . , s. Averaging over the Pi’s, we have

Pr(x,y)∼D;R[R wrong on (x,y)] > ε.

Since the maximum of a set of numbers is at least is average, there exists an input (x,y)
such that

PrR[R wrong on (x,y)] > ε,

which completes the proof. �

The converse of Lemma 3.1 also holds — whatever the true randomized communication
complexity of a problem, there exists a bad distribution D over inputs that proves it [5].
The proof is by strong linear programming duality or, equivalently, von Neumann’s Mini-
max Theorem for zero-sum games (see the exercises for details). Thus, the distributional
methodology is “complete” for proving lower bounds — one “only” needs to find the right
distribution D over inputs. In general this is a bit of a dark art, though in today’s application
D will just be the uniform distribution.

4 The Index Problem

We prove Theorem 2.1 in two steps. The first step is to prove a linear lower bound on the
randomized communication complexity of a problem called Index, which is widely useful for
proving one-way communication complexity lower bounds. The second step, which is easy,
reduces Index to Disjointness.

In an instance of Index, Alice gets an n-bit string x ∈ {0, 1}n and Bob gets an integer
i ∈ {1, 2, . . . , n}, encoded in binary using ≈ log2 n bits. The goal is simply to compute xi,
the ith bit of Alice’s input.

Intuitively, since Alice has no idea which of her bits Bob is interested in, she has to send
Bob her entire input. This intuition is easy to make precise for deterministic protocols, by a
Pigeonhole Principle argument. The intuition also holds for randomized protocols, but the
proof takes more work.

Theorem 4.1 ([2]) The randomized one-way communication complexity of Index is Ω(n).

With a general communication protocol, where Bob can also send information to Alice,
Index is trivial to solve using only ≈ log2 n bits of information — Bob just sends i to Alice.
Thus Index nicely captures the difficulty of designing non-trivial one-way communication
protocols, above and beyond the lower bounds that already apply to general protocols.

Theorem 4.1 easily implies Theorem 2.1.

6

Proof of Theorem 2.1: We show that Disjointness reduces to Index. Given an input (x, i)
of Index, Alice forms the input x′ = x while Bob forms the input y′ = ei; here ei is the
standard basis vector, with a “1” in the ith coordinate and “0”s in all other coordinates.
Then, (x′,y′) is a “yes” instance of Disjointness if and only if xi = 0. Thus, every one-way
protocol for Index induces one for Disjointness, with the same communication cost and
error probability. �

We now prove Theorem 4.1. While some computations are required, the proof is concep-
tually pretty straightforward.

Proof of Theorem 4.1: We apply the distributional complexity methodology. This requires
positing a distribution D over inputs. Sometimes this takes creativity. Here, the first thing
you’d try — the uniform distribution D, where x and i are chosen independently and uni-
formly at random — works.

Let c be a sufficiently small constant (like .1 or less) and assume that n is sufficiently large
(like 300 or more). We’ll show that every deterministic one-way protocol that uses at most
cn bits of communication has error (w.r.t. D) at least 1

8
. By Lemma 3.1, this implies that

every randomized protocol has error at least 1
8

on some input. Recalling the discussion about
error probabilities in Section 2, this implies that for every error ε′ > 0, there is a constant
c′ > 0 such that every randomized protocol that uses at most c′n bits of communication has
error bigger than ε′.

Fix a deterministic one-way protocol P that uses at most cn bits of communication.
Since P is deterministic, there are only 2cn distinct messages z that Alice ever sends to Bob
(ranging over the 2n possible inputs x). We need to formalize the intuition that Bob typically
(over x) doesn’t learn very much about x, and hence typically (over i) doesn’t know what
xi is.

Suppose Bob gets a message z from Alice, and his input is i. Since P is deterministic,
Bob has to announce a bit, “0” or “1,” as a function of z and i only. (Recall Figure 1).
Holding z fixed and considering Bob’s answers for each of his possible inputs i = 1, 2, . . . , n,
we get an n-bit vector — Bob’s answer vector a(z) when he receives message z from Alice.
Since there are at most 2cn possible messages z, there are at most 2cn possible answer vectors
a(z).

Answer vectors are a convenient way to express the error of the protocol P , with respect
to the randomness in Bob’s input. Fix Alice’s input x, which results in the message z. The
protocol is correct if Bob holds an input i with a(z)i = xi, and incorrect otherwise. Since
Bob’s index i is chosen uniformly at random, and independently of x, we have

Pri[P is incorrect |x, z] =
dH(x, a(z))

n
, (1)

where dH(x, a(z)) denotes the Hamming distance between the vectors x and a(z) (i.e., the
number of coordinates in which they differ). Our goal is to show that, with constant proba-
bility over the choice of x, the expression (1) is bounded below by a constant.

Let A = {a(z(x)) : x ∈ {0, 1}n} denote the set of all answer vectors used by the protocol
P . Recall that |A| ≤ 2cn. Call Alice’s input x good if there exists an answer vector a ∈ A

7

a1#
n/4# a2#

n/4#

a3#

n/4#

Figure 2: Balls of radius n/4 in the Hamming metric, centered at the answer vectors used
by the protocol P .

with dH(x, a) < n
4
, and bad otherwise. Geometrically, you should think of each answer vector

a as the center of a ball of radius n
4

in the Hamming cube — the set {0, 1}n equipped with
the Hamming metric. See Figure 2. The next claim states that, because there aren’t too
many balls (only 2cn for a small constant c) and their radii aren’t too big (only n

4
), the union

of all of the balls is less than half of the Hamming cube.5

Claim: Provided c is sufficiently small and n is sufficiently large, there are at least 2n−1

bad inputs x.

5More generally, the following is good intuition about the Hamming cube for large n: as you blow up
a ball of radius r around a point, the ball includes very few points until r is almost equal to n/2; the ball
includes roughly half the points for r ≈ n/2; and for r even modestly larger than r, the ball contains almost
all of the points.

8

Before proving the claim, let’s see why it implies the theorem. We can write

Pr(x,y)∼D[D wrong on (x,y)] = Pr[x is good] ·Pr[D wrong on (x,y) |x is good]︸ ︷︷ ︸
≥0

+ Pr[x is bad]︸ ︷︷ ︸
≥1/2 by Claim

·Pr[D wrong on (x,y) |x is bad] .

Recalling (1) and the definition of a bad input x, we have

Pr(x,y)[D wrong on (x,y) |x is bad] = Ex

[
dH(x, a(z(x)))

n
| x is bad

]

≥ Ex

 min
a∈A

dH(x, a)

n︸ ︷︷ ︸
≥1/4 since x is bad

| x is bad


≥ 1

4
.

We conclude that the protocol P errs on the distribution D with probability at last 1
8
, which

implies the theorem. We conclude by proving the claim.

Proof of Claim: Fix some answer vector a ∈ A. The number of inputs x with Hamming
distance at most n

4
from a is

1︸︷︷︸
a

+

(
n

1

)
︸︷︷︸

dH(x,a)=1

+

(
n

2

)
︸︷︷︸

dH(x,a)=2

+ · · ·+
(
n

n/4

)
︸ ︷︷ ︸

dH(x,a)=n/2

. (2)

Recalling the inequality (
n

k

)
≤
(en
k

)k
,

which follows easily from Stirling’s approximation of the factorial function (see the exercises),
we can crudely bound (2) above by

n(4e)n/4 = n2log2(4e)
n
4 ≤ n2.861n.

The total number of good inputs x — the union of all the balls — is at most |A|2.861n ≤
2(.861+c)n, which is at most 2n−1 for c sufficiently small (say .1) and n sufficiently large (at
least 300, say). �

5 Where We’re Going

Theorem 4.1 completes our first approach to proving lower bounds on the space required
by streaming algorithms to compute certain statistics. To review, we proved from scratch

9

that Index is hard for one-way communication protocols (Theorem 4.1), reduced Index
to Disjointness to extend the lower bound to the latter problem (Theorem 2.1), and
reduced Disjointness to various streaming computations (last lecture). See also Figure 3.
Specifically, we showed that linear space is necessary to compute the highest frequency in a
data stream (F∞), even when randomization and approximation are allowed, and that linear
space is necessary to compute exactly F0 or F2 by a randomized streaming algorithm with
success probability 2/3.

Index︸ ︷︷ ︸
Theorem 4.1

Theorem 2.1−−−−−−−→ Disjointness
Lecture #1−−−−−−→ Streaming

Figure 3: Review of the proof structure of linear (in min{n,m}) space lower bounds for
streaming algorithms. Lower bounds travel from left to right.

We next focus on the dependence on the approximation parameter ε required by a stream-
ing algorithm to compute a (1 ± ε)-approximation of a frequency moment. Recall that the
streaming algorithms that we’ve seen for F0 and F2 have quadratic dependence on ε−1. Thus
an approximation of 1% would require a blowup of 10,000 in the space. Obviously, it would
be useful to have algorithms with a smaller dependence on ε−1. We next prove that space
quadratic in ε−1 is necessary, even allowing randomization and even for F0 and F2, to achieve
a (1± ε)-approximation.

Happily, we’ll prove this via reductions, and won’t need to prove from scratch any new
communication lower bounds. We’ll follow the path in Figure 4. First we introduce a new
problem, also very useful for proving lower bounds, called the Gap-Hamming problem.
Second, we give a quite clever reduction from Index to Gap-Hamming. Finally, it is
straightforward to show that one-way protocols for Gap-Hamming with sublinear commu-
nication induce streaming algorithms that can compute a (1± ε)-approximation of F0 or F2

in o(ε−2) space.

Index︸ ︷︷ ︸
Theorem 4.1

Theorem 7.1−−−−−−−→ Gap-Hamming
Section 6.2−−−−−−→ Streaming

Figure 4: Proof plan for Ω(ε−2) space lower bounds for (randomized) streaming algorithms
that approximate F0 or F2 up to a 1± ε factor. Lower bounds travel from left to right.

6 The Gap-Hamming Problem

Our current goal is to prove that every streaming algorithm that computes a (1 ± ε)-
approximation of F0 or F2 needs Ω(ε−2) space. Note that we’re not going to prove this
when ε � 1/

√
n, since we can always compute a frequency moment exactly in linear or

near-linear space. So the extreme case of what we’re trying to prove is that a (1 ± 1√
n
)-

approximation requires Ω(n) space. This special case already requires all of the ideas needed
to prove a lower bound of Ω(ε−2) for all larger ε as well.

10

6.1 Why Disjointness Doesn’t Work

Our goal is also to prove this lower bound through reductions, rather than from scratch. We
don’t know too many hard problems yet, and we’ll need a new one. To motivate it, let’s see
why Fis not good enough for our purposes.

Suppose we have a streaming algorithm S that gives a (1± 1√
n
)-approximation to F0 —

how could we use it to solve F? The obvious idea is to follow the reduction used last lecture
for F∞. Alice converts her input x of Disjointness and converts it to a stream, feeds this
stream into S, sends the final memory state of S to Bob, and Bob converts his input y of
Disjointness into a stream and resumes S’s computation on it. With healthy probability,
S returns a (1± 1√

n
)-approximation of F0 of the stream induced by (x,y). But is this good

for anything?
Suppose (x,y) is a “yes” instance to Disjointness. Then, F0 of the corresponding stream

is |x|+ |y|, where | · | denotes the number of 1’s in a bit vector. If (x,y) is a “no” instance of
Disjointness, then F0 is somewhere between max{|x|, |y|} and |x| + |y| − 1. A particularly
hard case is when |x| = |y| = n/2 and x,y are either disjoint or overlap in exactly one element
— F0 is then either n or n − 1. In this case, a (1 ± 1√

n
)-approximation of F0 translates to

additive error
√
n, which is nowhere near enough resolution to distinguish between “yes”

and “no” instances of Disjointness.

6.2 Reducing Gap-Hamming to F0 Estimation

A (1± 1√
n
)-approximation of F0 is insufficient to solve F— but perhaps there is some other

hard problem that it does solve? The answer is yes, and the problem is estimating the
Hamming distance between two vectors x,y — the number of coordinates in which x,y
differ.

To see the connection between F0 and Hamming distance, consider x,y ∈ {0, 1}n and
the usual data stream (with elements in U = {1, 2, . . . , n}) induced by them. As usual, we
can interpret x,y as characteristic vectors of subsets A,B of U (Figure 5). Observe that the
Hamming distance dH(x,y) is the just the size of the symmetric difference, |A\B|+ |B \A|.
Observe also that F0 = |A ∪ B|, so |A \ B| = F0 − |B| and |B \ A| = F0 − |A|, and hence
dH(x,y) = 2F0 − |x| − |y|. Finally, Bob knows |y|, and Alice can send |x| to Bob using
log2 n bits.

The point is that a one-way protocol that computes F0 with communication c yields a
one-way protocol that computes dH(x,y) with communication c+ log2 n. More generally, a
(1± 1√

n
)-approximation of F0 yields a protocol that estimates dH(x,y) up to 2F0/

√
n ≤ 2

√
n

additive error, with log2 n extra communication.
This reduction from Hamming distance estimation to F0 estimation is only useful to us

if the former problem has large communication complexity. It’s technically convenient to
convert Hamming distance estimation into a decision problem. We do this using a “promise
problem” — intuitively, a problem where we only care about a protocol’s correctness when
the input satisfies some conditions (a “promise”). Formally, for a parameter t, we say that a
protocol correctly solves Gap-Hamming(t) if it outputs “1” whenever dH(x,y) < t− c

√
n

11

x" y"

indices'with'xi'='1'

Figure 5: The Hamming distance between two bit vectors equals the size of the symmetric
difference of the corresponding subsets of 1-coordinates.

and outputs “0” whenever dH(x,y) > t + c
√
n, where c is a sufficiently small constant.

Note that the protocol can output whatever it wants, without penalty, on inputs for which
dH(x,y) = t± c

√
n.

Our reduction above shows that, for every t, Gap-Hamming(t) reduces to the (1± c√
n
)-

approximation of F0. Does it matter how we pick t? Remember we still need to prove that the
Gap-Hamming(t) problem does not admit low-communication one-way protocols. If we pick
t = 0, then the problem becomes a special case of the Equality problem (where f(x,y) = 1
if and only x = y). We’ll see next lecture that the one-way randomized communication
complexity of Equality is shockingly low — only O(1) for public-coin protocols. Picking
t = n has the same issue. Picking t = n

2
seems more promising. For example, it’s easy to

certify a “no” instance of Equality— just exhibit an index where x and y differ. How
would you succinctly certify that dH(x,y) is either at least n

2
+
√
n or at most n

2
−
√
n?

For more intuition, think about two vectors x,y ∈ {0, 1}n chosen uniformly at random.
The expected Hamming distance between them is n

2
, with a standard deviation of ≈

√
n.

Thus deciding an instance of Gap-Hamming(n
2
) has the flavor of learning an unpredictable

fact about two random strings, and it seems difficult to do this without learning detailed
information about the particular strings at hand.

7 Lower Bound on the Communication Complexity of

Gap-Hamming

This section dispenses with the hand-waving and formally proves that every protocol that
solves Gap-Hamming— with t = n

2
and c sufficiently small — requires linear communica-

tion.

12

Theorem 7.1 ([1, 3, 4]) The randomized one-way communication complexity of Gap-Hamming
is Ω(n).

Proof: The proof is a randomized reduction from Index, and is more clever than the other
reductions that we’ve seen so far. Consider an input to Index, where Alice holds an n-bit
string x and Bob holds an index i ∈ {1, 2, . . . , n}. We assume, without loss of generality,
that n is odd and sufficiently large.

Alice and Bob generate, without any communication, an input (x′,y′) to Gap-Hamming.
They do this one bit at a time, using the publicly available randomness. To generate the
first bit of the Gap-Hamming input, Alice and Bob interpret the first n public coins as a
random string r. Bob forms the bit b = ri, the ith bit of the random string. Intuitively,
Bob says “I’m going to pretend that r is actually Alice’s input, and report the corresponding
answer ri.” Meanwhile, Alice checks whether dH(x, r) < n

2
or dH(x, r) > n

2
. (Since n is odd,

one of these holds.) In the former case, Alice forms the bit a = 1 to indicate that r is a
decent proxy for her input x. Otherwise, she forms the bit a = 0 to indicate that 1−r would
have been a better approximation of reality (i.e., of x).

The key and clever point of the proof is that a and b are correlated — positively if xi = 1
and negatively if xi = 0, where x and i are the given input to Index. To see this, condition
on the n − 1 bits of r other than i. There are two cases. In the first case, x and r agree
on strictly less than or strictly greater than (n − 1)/2 of the bits so-far. In this case, a is
already determined (to 0 or 1, respectively). Thus, in this case, Pr[a = b] = Pr[a = ri] = 1

2
,

using that ri is independent of all the other bits. In the second case, amongst the n − 1
bits of r other than ri, exactly half of them agree with x. In this case, a = 1 if and only if
xi = ri. Hence, if xi = 1, then a and b always agree (if ri = 1 then a = b = 1, if ri = 0 then
a = b = 0). If xi = 0, then a and b always disagree (if ri = 1, then a = 0 and b = 1, if ri = 0,
then a = 1 and b = 0).

The probability of the second case is the probability of getting (n − 1)/2 “heads” out
of n − 1 coin flips, which is

(
n−1

(n−1)/2

)
. Applying Stirling’s approximation of the factorial

function shows that this probability is bigger than you might have expected, namely ≈ c′√
n

for a constant c′ (see Exercises for details). We therefore have

Pr[a = b] = Pr[Case 1]︸ ︷︷ ︸
1− c′√

n

·Pr[a = b |Case 1]︸ ︷︷ ︸
=

1
2

+ Pr[Case 2]︸ ︷︷ ︸
c′√
n

·Pr[a = b |Case 2]︸ ︷︷ ︸
1 or 0

=

{
1
2
− c′√

n
if xi = 1

1
2

+ c′√
n

if xi = 0.

This is pretty amazing when you think about it — Alice and Bob have no knowledge
of each other’s inputs and yet, with shared randomness but no explicit communication, can
generate bits correlated with xi!

6

6This would clearly not be possible with a private-coin protocol. But we’ll see later than the (additive)
difference between the private-coin and public-coin communication complexity of a problem is O(log n), so
a linear communication lower bound for one type automatically carries over to the other type.

13

The randomized reduction from Index to Gap-Hamming now proceeds as one would
expect. Alice and Bob repeat the bit-generating experiment above m independent times to
generate m-bit inputs x′ and y′ of Gap-Hamming. Here m = qn for a sufficiently large
constant q. The expected Hamming distance between x′ and y′ is at most m

2
− c′
√
m (if

xi = 1) or at least m
2

+ c′
√
m (if xi = 0). A routine application of the Chernoff bound

(see Exercises) implies that, for a sufficiently small constant c and large constant q, with
probability at least 8

9
(say), dH(x′,y′) < m

2
− c
√
m (if xi = 1) and dH(x′,y′) > m

2
+ c
√
m

(if xi = 0). When this event holds, Alice and Bob can correctly compute the answer to the
original input (x, i) to Index by simply invoking any protocol P for Gap-Hamming on the
input (x′,y′). The communication cost is that of P on inputs of length m = Θ(n). The
error is at most the combined error of the randomized reduction and of the protocol P —
whenever the reduction and P both proceed as intended, the correct answer to the Index
input (x, i) is computed.

Summarizing, our randomized reduction implies that, if there is a (public-coin) random-
ized protocol for Gap-Hamming with (two-sided) error 1

3
and sublinear communication,

then there is a randomized protocol for Index with error 4
9
. Since we’ve ruled out the latter,

the former does not exist. �

Combining Theorem 7.1 with our reduction from Gap-Hamming to estimating F∞,
we’ve proved the following.

Theorem 7.2 There is a constant c > 0 such that the following statement holds: There is
no sublinear-space randomized streaming algorithm that, for every data stream, computes F0

to within a 1± c√
n

factor with probability at least 2/3.

A variation on the same reduction proves the same lower bound for approximating F2;
see the Exercises.

Our original goal was to prove that the (1± ε)-approximate computation of F0 requires
space Ω(ε−2), when ε ≥ 1√

n
. Theorem 7.2 proves this in the special case where ε = Θ(1√

n
).

This can be extended to larger ε by a simple “padding” trick. Fix your favorite values of n
and ε ≥ 1√

n
and modify the proof of Theorem 7.2 as follows. Reduce from Gap-Hamming

on inputs of length m = Θ(ε−2). Given an input (x,y) of Gap-Hamming, form (x′,y′) by
appending n−m zeroes to x and y. A streaming algorithm with space s that estimates F0

on the induced data stream up to a (1± ε) factor induces a randomized protocol that solves
this special case of Gap-Hamming with communication s. Theorem 7.1 implies that every
randomized protocol for the latter problem uses communication Ω(ε−2), so this lower bound
carries over to the space used by the streaming algorithm.

References

[1] T. S. Jayram, R. Kumar, and D. Sivakumar. The one-way communication complexity of
hamming distance. Theory of Computing, 4:129–135, 2008.

14

[2] I. Kremer, N. Nisan, and Ron D. On randomized one-round communication complexity.
Computational Complexity, 8(1):21–49, 1999.

[3] D. P. Woodruff. Optimal space lower bounds for all frequency moments. In Proceedings
of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
167–175, 2004.

[4] D. P. Woodruff. Efficient and Private Distance Approximation in the Communication
and Streaming Models. PhD thesis, MIT, 2007.

[5] A. C.-C. Yao. Lower bounds by probabilistic arguments. In Proceedings of the 24th
Annual Symposium on Foundations of Computer Science (FOCS), pages 420–428, 1983.

15

