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1 Linear Programs, Polytopes, and Extended Formu-

lations

1.1 Linear Programs for Combinatorial Optimization Problems

You’ve probably seen some polynomial-time algorithms for the problem of computing a
maximum-weight matching of a bipartite graph.1 Many of these, like the Kuhn-Tucker
algorithm [9], are “combinatorial algorithms” that operate directly on the graph.

Linear programming is also an effective tool for solving many discrete optimization prob-
lems. For example, consider the following linear programming relaxation of the maximum-
weight bipartite matching problem (for a weighted bipartite graph G = (U, V,E,w)):

max
∑
e∈E

wexe (1)

subject to ∑
e∈δ(v)

xe ≤ 1 (2)

for every vertex v ∈ U ∪ V (where δ(v) denotes the edges incident to v) and

xe ≥ 0 (3)

∗ c©2015, Tim Roughgarden.
†Department of Computer Science, Stanford University, 474 Gates Building, 353 Serra Mall, Stanford,
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1Recall that a graph is bipartite if its vertex set can be partitioned into two sets U and V such that

every edge has one endpoint in each of U, V . Recall that a matching of a graph is a subset of edges that are
pairwise disjoint.
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for every edge e ∈ E.
In this formulation, each decision variable xe is intended to encode whether an edge e is

in the matching (xe = 1) or not (xe = 0). It is easy to verify that the vectors of {0, 1}E that
satisfy the constraints (2) and (3) are precisely the characteristic vectors of the matchings of
G, with the objective function value of the solution to the linear program equal to the total
weight of the matching.

Since every characteristic vector of a matching satisfies (2) and (3), and the set of feasible
solutions to the linear system defined by (2) and (3) is convex, the convex hull of the
characteristic vectors of matchings is contained in this feasible region.2 Also note that every
characteristic vector x of a matching is a vertex3 of this feasible region — since all feasible
solutions have all coordinates bounded by 0 and 1, the 0-1 vector x cannot be written as a
non-trivial convex combination of other feasible solutions. The worry is does this feasible
region contain anything other than the convex hull of characteristic vectors of matchings?
Equivalently, does it have any vertices that are fractional, and hence do not correspond to
matchings? (Note that integrality is not explicitly enforced by (2) or (3).)

A nice fact is that the vertices of the feasible region defined by (2) and (3) are precisely
the characteristic vectors of matchings of G. This is equivalent to the Birkhoff-von Neumann
theorem (see Exercises). There are algorithms that solve linear programs in polynomial time
(and output a vertex of the feasible region, see e.g. [6]), so this implies that the maximum-
weight bipartite matching problem can be solved efficiently using linear programming.

How about the more general problem of maximum-weight matching in general (non-
bipartite) graphs? While the same linear system (2) and (3) still contains the convex hull
of all characteristic vectors of matchings, and these characteristic vectors are vertices of the
feasible region, there are also other, fractional, vertices. To see this, consider the simplest
non-bipartite graph, a triangle. Every matching contains at most 1 edge. But assigning xe =
1
2

for each of the edges e yields a fractional solution that satisfies (2) and (3). This solution
clearly cannot be written as a convex combination of characteristic vectors of matchings.

It is possible to add to (2)–(3) additional inequalities — “odd cycle inequalities” stating
that, for every odd cycle C of G,

∑
e∈C xe ≤ (|C| − 1)/2 — so that the resulting smaller set

of feasible solutions is precisely the convex hull of the characteristic vectors of matchings.
Unfortunately, many graphs have an exponential number of odd cycles. Is it possible to
add only a polynomial number of inequalities instead? Unfortunately not — the convex hull
of the characteristic vectors of matchings can have 2Ω(n) “facets” [13].4 We define facets

2Recall that a set S ⊆ Rn is convex if it is “filled in,” with λx + (1 − λ)y ∈ S whenever x,y ∈ S and
λ ∈ [0, 1]. Recall that the convex hull of a point set P ⊆ Rn is the smallest (i.e., intersection of all) convex
set that contains it. Equivalently, it is the set of all finite convex combinations of points of P , where a convex
combination has the form

∑p
i=1 λixi for non-negative λi’s summing to 1 and x1, . . . ,xp ∈ P .

3There is an unfortunate clash of terminology when talking about linear programming relaxations of
combinatorial optimization problems: a “vertex” might refer to a node of a graph or to a “corner” of a
geometric set.

4This linear programming formulation still leads to a polynomial-time algorithm, but using fairly heavy
machinery — the “ellipsoid method” [8] and a “separation oracle” for the odd cycle inequalities [11]. There
are also polynomial-time combinatorial algorithms for (weighted) non-bipartite matching, beginning with
Edmonds [3].
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more formally in Section 3.1, but intuitively they are the “sides” of a polytope,5 like the 2n
sides of an n-dimensional cube. It is intuitively clear that a polytope with ` facets needs
` inequalities to describe — it’s like cleaving a shape out of marble, with each inequality
contributing a single cut. We conclude that there is no linear program with variables {xe}e∈E
of polynomial size that captures the maximum-weight (non-bipartite) matching problem.

1.2 Auxiliary Variables and Extended Formulations

The exponential lower bound above on the number of linear inequalities needed to describe
the convex hull of characteristic vectors of matchings of a non-bipartite graph applies to
linear systems in RE, with one dimension per edge. The idea of an extended formulation
is to add a polynomial number of auxiliary decision variables, with the hope that radically
fewer inequalities are needed to describe the region of interest in the higher-dimensional
space.

This idea might sound like grasping at straws, but sometimes it actually works. For
example, fix a positive integer n, and represent a permutation π ∈ Sn by the n-vector
xπ = (π(1), π(2), . . . , π(n)), with all coordinates in {1, 2, . . . , n}. The permutahedron is the
convex hull of all n! such vectors. The permutahedron is known to have 2n/2 − 2 facets (see
e.g. [5]), so a polynomial-sized linear description would seem out of reach.

Suppose we add n2 auxiliary variables, yij for all i, j ∈ {1, 2, . . . , n}. The intent is for yij
to be a 0-1 variable that indicates whether or not π(i) = j — in this case, the yij’s are the
entries of the n× n permutation matrix that corresponds to π.

We next add a set of constraints to enforce the desired semantics of the yij’s (cf., (2)
and (3)):

n∑
j=1

yij ≤ 1 (4)

for i = 1, 2, . . . , n;
n∑
i=1

yij ≤ 1 (5)

for j = 1, 2, . . . , n; and
yij ≥ 0 (6)

for all i, j ∈ {1, 2, . . . , n}. We also add constraints that enforce consistency between the
permutation encoded by the xi’s and by the yij’s:

xi =
n∑
j=1

jyij (7)

for all i = 1, 2, . . . , n.

5A polytope is just a high-dimensional polygon — an intersection of halfspaces that is bounded or, equiv-
alently, the convex hull of a finite set of points.
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It is straightforward to check that the vectors y ∈ {0, 1}n2
that satisfy (4)–(6) are pre-

cisely the permutation matrices. For such a y corresponding to a permutation π, the con-
straints (7) force the xi’s to encode the same permutation π. Using again the Birkhoff-von
Neumann Theorem, every vector y ∈ Rn2

that satisfies (4)–(6) is a convex combination of
permutation matrices (see Exercises). Constraint (7) implies that the xi’s encode the same
convex combination of permutations. Thus, if we take the set of solutions in Rn+n2

that
satisfy (4)–(7) and project onto the x-coordinates, we get exactly the permutahedron. This
is what we mean by an extended formulation of a polytope.

To recap the remarkable trick we just pulled off: blowing up the number of variables from
n to n + n2 reduced the number of inequalities needed from 2n/2 to n2 + 3n. This allows
us to optimize a linear function over the permutahedron in polynomial time. Given a linear
function (in the xi’s), we optimize it over the (polynomial-size) extended formulation, and
retain only the x-variables of the optimal solution.

Given the utility of polynomial-size extended formulations, we’d obviously like to under-
stand which problems have them. For example, does the non-bipartite matching problem
admit such a formulation? The goal of this lecture is to develop communication complexity-
based techniques for ruling out such polynomial-size extended formulations. We’ll prove
an impossibility result for the “correlation polytope” [4]; similar (but much more involved)
arguments imply that every extended formulation of the non-bipartite matching problem
requires an exponential number of inequalities [14].

Remark 1.1 (Geometric Intuition) It may seem surprising that adding a relatively small
number of auxiliary variables can radically reduce the number of inequalities needed to de-
scribe a set — described in reverse, that projecting onto a subset of variables can massively
blow up the number of sides. It’s hard to draw (low-dimensional) pictures that illustrate
this point. If you play around with projections of some three-dimensional polytopes onto
the plane, you’ll observe that non-facets of the high-dimensional polytope (edges) often
become facets (again, edges) in the low-dimensional projection. Since the number of lower-
dimensional faces of a polytope can be much bigger than the number of facets — already in
the 3-D cube, there are 12 edges and only 6 sides — it should be plausible that a projection
could significantly increase the number of facets.

2 Nondeterministic Communication Complexity

The connection between extended formulations of polytopes and communication complexity
involves nondeterministic communication complexity. We studied this model implicitly in
parts of Lecture #4; this section makes the model explicit.

Consider a function f : X × Y → {0, 1} and the corresponding 0-1 matrix M(f), with
rows indexed by Alice’s possible inputs and columns indexed by Bob’s possible inputs. In
Lecture #4 we proved that if every covering of M(f) by monochromatic rectangles6 requires

6Recall that a rectangle is a subset S ⊆ X × Y that has a product structure, meaning S = A × B for
some A ⊆ X and B ⊆ Y . Equivalently, S is closed under “mix and match:” whenever (x1,y1) and (x2,y2)
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Figure 1: A covering by four monochromatic rectangles that is not a partition.

at least t rectangles, then the deterministic communication complexity of f is at least log2 t.
The reason is that every communication protocol computing f with communication cost c
induces a partition of M(f) into at most 2c monochromatic rectangles, and partitions are a
special case of coverings. See also Figure 1.

Communication complexity lower bounds that are proved through coverings are actually
much stronger than we’ve let on thus far — they apply also to nondeterministic protocols,
which we define next.

You presumably already have a feel for nondeterminism from your study of the complexity
class NP . Recall that one way to define NP is as the problems for which membership can be
verified in polynomial time. To see how an analog might work with communication protocols,
consider the complement of the Equality problem, ¬Equality. If a third party wanted
to convince Alice and Bob that their inputs x and y are different, it would not be difficult:
just specify an index i ∈ {1, 2, . . . , n} for which xi 6= yi. Specifying an index requires log2 n
bits, and specifying whether or not xi = 0 and yi = 1 or xi = 1 and yi = 0 requires one
additional bit. Given such a specification, Alice and Bob can check the correctness of this
“proof of non-equality” without any communication. If x 6= y, there is always a (log2 +1)-bit
proof that will convince Alice and Bob of this fact; if x = y, then no such proof will convince
Alice and Bob otherwise. This means that ¬Equality has nondeterministic communication
complexity at most log2 n+ 1.

Coverings of M(f) by monochromatic rectangles are closely related to the nondetermin-
istic communication complexity of f . We first show how coverings lead to nondeterministic
protocols. It’s easiest to formally define such protocols after the proof.

Proposition 2.1 Let f : X × Y → {0, 1} be a Boolean function and M(f) the correspond-

are in S, so are (x1,y2) and (x2,y1). A rectangle is monochromatic (w.r.t. f) if it contains only 1-entries of
M(f) or only 0-entries of M(f). In these cases, we call it a 1-rectangle or a 0-rectangle, respectively.

5



ing matrix. If there is a cover of the 1-entries of M(f) by t 1-rectangles, then there is a
nondeterministic protocol that verifies f(x,y) = 1 with cost log2 t.

Proof: Let R1, . . . , Rt denote a covering of the 1s of M(f) by 1-rectangles. Alice and Bob
can agree to this covering in advance of receiving their inputs. Now consider the following
scenario:

1. A prover — a third party — sees both inputs x and y. (This is the formal model used
for nondeterministic protocols.)

2. The prover writes an index i ∈ {1, 2, . . . , t} — the name of a rectangle Ri — on a
blackboard, in public view. Since Ri is a rectangle, it can be written as Ri = Ai × Bi

with Ai ⊆ X, Bi ⊆ Y .

3. Alice accepts if and only if x ∈ Ai.

4. Bob accepts if and only if y ∈ Bi.

This protocol has the following properties:

1. If f(x,y) = 1, then there exists a proof such that Alice and Bob both accept. (Since
f(x,y) = 1, (x,y) ∈ Ri for some i, and Alice and Bob both accept if “i” is written on
the blackboard.)

2. If f(x,y) = 0, there is no proof that both Alice and Bob accept. (Whatever index
i ∈ {1, 2, . . . , t} is written on the blackboard, since f(x,y) = 0, either x 6∈ Ri or
y 6∈ Ri, causing a rejection.)

3. The maximum length of a proof is log2 t. (A proof is just an index i ∈ {1, 2, . . . , t}.)

These three properties imply, by definition, that the nondeterministic communication com-
plexity of the function f and the output 1 is at most log2 t. �

The proof of Proposition 2.1 introduces our formal model of nondeterministic communi-
cation complexity: Alice and Bob are given a “proof” or “advice string” by a prover, which
can depend on both of their inputs; the communication cost is the worst-case length of the
proof; and a protocol is said to compute an output z ∈ {0, 1} of a function f if f(x,y) = z
if and only if there exists proof such that both Alice and Bob accept.

With nondeterministic communication complexity, we speak about both a function f and
an output z ∈ {0, 1}. For example, if f is Equality, then we saw that the nondeterministic
communication complexity of f and the output 0 is at most log2 n + 1. Since it’s not clear
how to convince Alice and Bob that their inputs are equal without specifying at least one
bit for each of the n coordinates, one might expect the nondeterministic communication
complexity of f and the output 1 to be roughly n. (And it is, as we’ll see.)

We’ve defined nondeterministic protocols so that Alice and Bob never speak, and only
verify. This is without loss of generality, since given a protocol in which they do speak,
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one could modify it so that the prover writes on the blackboard everything that they would
have said. We encourage the reader to formalize an alternative definition of nondeterministic
protocols without a prover and in which Alice and Bob speak nondeterministically, and to
prove that this definition is equivalent to the one we’ve given above (see Exercises).

Next we prove the converse of Proposition 2.2.

Proposition 2.2 If the nondeterministic communication complexity of the function f and
the output 1 is c, then there is a covering of the 1s of M(f) by 2c 1-rectangles.

Proof: Let P denote a nondeterministic communication protocol for f and the output 1 with
communication cost (i.e., maximum proof length) at most c. For a proof `, let Z(`) denote
the inputs (x,y) where both Alice and Bob accept the proof. We can write Z(`) = A× B,
where A is the set of inputs x ∈ X of Alice where she accepts the proof `, and B is the
set of inputs y ∈ Y of Bob where he accepts the proof. By the assumed correctness of P ,
f(x,y) = 1 for every (x,y) ∈ Z(`). That is, Z(`) is a 1-rectangle.

By the first property of nondeterministic protocols, for every 1-input (x,y) there is a
proof such that both Alice and Bob accept. That is, ∪`Z(`) is precisely the set of 1-inputs
of f — a covering of the 1s of M(f) by 1-rectangles. Since the communication cost of P is
at most c, there are at most 2c different proofs `. �

Proposition 2.2 implies that communication complexity lower bounds derived from cov-
ering lower bounds apply to nondeterministic protocols.

Corollary 2.3 If every covering of the 1s of M(f) by 1-rectangles uses at least t rectangles,
then the nondeterministic communication complexity of f is at least log2 t.

Thus our arguments in Lecture #4, while simple, were even more powerful than we re-
alized — they prove that the nondeterministic communication complexity of Equality,
Disjointness, and Greater-Than (all with output 1) is at least n. It’s kind of amazing
that these lower bounds can be proved with so little work.

3 Extended Formulations and Nondeterministic Com-

munication Complexity

What does communication complexity have to do with extended formulations? To forge a
connection, we need to show that an extended formulation with few inequalities is somehow
useful for solving hard communication problems. While this course includes a number of
clever connections between communication complexity and various computational models,
this connection to extended formulations is perhaps the most surprising and ingenious one
of them all. Superficially, extended formulations with few inequalities can be thought of as
“compressed descriptions” of a polytope, and communication complexity is generally useful
for ruling out compressed descriptions of various types. It is not at all obvious that this
vague intuition can be turned into a formal connection, let alone one that is useful for
proving non-trivial impossibility results.
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Figure 2: A supporting hyperplane of a polytope P and the corresponding face of the
polytope.

3.1 Faces and Facets

We discuss briefly some preliminaries about polytopes. Let P be a polytope in variables
x ∈ Rn. By definition, an extended formulation of P is a set of the form

Q = {(x,y) : Cx + Dy ≤ d},

where x and y are the original and auxiliary variables, respectively, such that

{x : ∃y s.t. (x,y) ∈ Q} = P.

This is, projecting Q onto the original variables x yields the original polytope P . The
extended formulation of the permutahedron described in Section 1.2 is a canonical example.
The size of an extended formulation is the number of inequalities.7

Recall that x ∈ P is a vertex if it cannot be written as a non-trivial convex combination
of other points in P . A supporting hyperplane of P is a vector a ∈ Rn and scalar b ∈ R such
that ax = b for all x ∈ P . Every supporting hyperplane a, b induces a face of P , defined
as {x ∈ P : ax = b} — the intersection of the boundaries of P and of the the halfspace
defined by the supporting hyperplane. (See Figure 2.) Note that a face is generally induced
by many different supporting hyperplanes. The empty set is considered a face. Note also
that faces are nested — in three dimensions, there are vertices, edges, and sides. In general,
if f is a face of P , then the vertices of f are precisely the vertices of P that are contained in
f .

7There is no need to keep track of the number of auxiliary variables — there is no point in having an
extended formulation of this type with more variables than inequalities (see Exercises).
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A facet of P is a maximal face — a face that is not strictly contained in any other face.
Provided P has a non-empty interior, its facets are (n− 1)-dimensional.

There are two different types of finite descriptions of a polytope, and it is useful to go
back and forth between them. First, a polytope P equals the convex hull of its vertices.
Second, P is the intersection of the halfspaces that define its facets.8

3.2 Yannakakis’s Lemma

What good is a small extended formulation? We next make up a contrived communication
problem for which small extended formulations are useful. For a polytope P , in the corre-
sponding Face-Vertex(P ) problem, Alice gets a face f of P (in the form of a supporting
hyperplane a, b) and Bob gets a vertex v of P . The function FV (f, v) is defined as 1 if v does
not belong to f , and 0 if v ∈ f . Equivalently, FV (f, v) = 1 if and only if aTv < b, where
a, b is a supporting hyperplane that induces f . Polytopes in n dimensions generally have
an exponential number of faces and vertices. Thus, trivial protocols for Face-Vertex(P ),
where one party reports their input to the other, can have communication cost Ω(n).

A key result is the following.

Lemma 3.1 (Yannakakis’s Lemma [15]) If the polytope P admits an extended formula-
tion Q with r inequalities, then the nondeterministic communication complexity of Face-
Vertex(P ) is at most log2 r.

That is, if we can prove a linear lower bound on the nondeterministic communication com-
plexity of the Face-Vertex(P ) problem, then we have ruled out subexponential-size ex-
tended formulations of P .

Sections 3.3 and 3.4 give two different proof sketches of Lemma 3.1. These are roughly
equivalent, with the first emphasizing the geometric aspects (following [10]) and the second
the algebraic aspects (following [15]). In Section 4 we put Lemma 3.1 to use and prove strong
lower bounds for a concrete polytope.

Remarkably, Yannakakis [15] did not give any applications of his lemma — the lower
bounds for extended formulations in [15] are for “symmetric” formulations and proved via
direct arguments. Lemma 3.1 was suggested in [15] as a potentially useful tool for more
general impossibility results, and finally in the past five years (beginning with [4]) this
prophecy has come to pass.

3.3 Proof Sketch of Lemma 3.1: A Geometric Argument

Suppose P admits an extended formulation Q = {(x,y) : Cx + Dy ≤ d} with only r
inequalities. Both P and Q are known to Alice and Bob before the protocol begins. A first
idea is for Alice, who is given a face f of the original polytope P , to tell Bob the name of the

8Proofs of all of these statements are elementary but outside the scope of this lecture; see e.g. [16] for
details.
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“corresponding face” of Q. Bob can then check whether or not his “corresponding vertex”
belongs to the named face or not, thereby computing the function.

Unfortunately, knowing that Q is defined by r inequalities only implies that it has at
most r facets — it can have a very large number of faces. Thus Alice can no more afford to
write down an arbitrary face of Q than a face of P .

We use a third-party prover to name a suitable facet of Q than enables Alice and Bob
to compute the Face-Vertex(P ) function; since Q has at most r facets, the protocol’s
communication cost is only log2 r, as desired.

Suppose the prover wants to convince Alice and Bob that Bob’s vertex v of P does not
belong to Alice’s face f of P . If the prover can name a facet f ∗ of Q such that:

(i) there exists yv such that (v,yv) 6∈ f ∗; and

(ii) for every (x,y) ∈ Q with x ∈ f , (x,y) ∈ f ∗;

then this facet f ∗ proves that v 6∈ f . Moreover, given f ∗, Alice and Bob can verify (ii)
and (i), respectively, without any communication.

All that remains to prove is that, when v /∈ f , there exists a facet f ∗ of Q such that (i)
and (ii) hold. First consider the inverse image of f in Q, f̃ = {(x,y) ∈ Q : x ∈ f}.
Similarly, define ṽ = {(v,y) ∈ Q}. Since v /∈ f , f̃ and ṽ are disjoint subsets of Q. It is not
difficult to prove that f̃ and ṽ, as inverse images of faces under a linear map, are faces of Q
(exercise). An intuitive but non-trivial fact is that every face of a polytope is the intersection
of the facets that contain it.9 Thus, for every vertex v∗ of Q that is contained in ṽ (and
hence not in f̃) — and since ṽ is non-empty, there is at least one — we can choose a facet
f ∗ of Q that contains f̃ (property (ii)) but excludes v∗ (property (i)). This concludes the
proof sketch of Lemma 3.1.

3.4 Proof Sketch of Lemma 3.1: An Algebraic Argument

The next proof sketch of Lemma 3.1 is a bit longer but introduces some of the most important
concepts in the study of extended formulations.

The slack matrix of a polytope P has rows indexed by faces F and columns indexed by
vertices V . We identify each face with a canonical supporting hyperplane a, b. Entry Sfv of
the slack matrix is defined as b−aTv, where a, b is the supporting hyperplane corresponding
to the face f . Observe that all entries of S are nonnegative. Define the support supp(S)
of the slack matrix S as the F × V matrix with 1-entries wherever S has positive entries,
and 0-entries wherever S has 0-entries. Observe that supp(S) is a property only of the
polytope P , independent of the choices of the supporting hyperplanes for the faces of P .
Observe also that supp(S) is precisely the answer matrix for the Face-Vertex(P ) problem
for the polytope P .

We next identify a sufficient condition for Face-Vertex(P ) to have low nondetermin-
istic communication complexity; later we explain why the existence of a small extended

9This follows from Farkas’s Lemma, or equivalently the Separating Hyperplane Theorem. See [16] for
details.
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Figure 3: A rank-r factorization of the slack matrix S into nonnegative matrices T and U .

formulation implies this sufficient condition. Suppose the slack matrix S has nonnegative
rank r, meaning it is possible to write S = TU with T a |F | × r nonnegative matrix and U
a r× |V | nonnegative matrix (Figure 3).10 Equivalently, suppose we can write S as the sum
of r outer products of nonnegative vectors (indexed by F and V ):

S =
r∑
j=1

αj · βTj , (8)

where the αj’s correspond to the columns of T and the βj’s to the rows of U .
We claim that if the slack matrix S of a polytope P has nonnegative rank r, then there is

a nondeterministic communication protocol for Face-Vertex(P ) with cost at most log2 r.
As usual, Alice and Bob can agree to the decomposition (8) in advance. A key observation
is that, by inspection of (8), Sfv > 0 if and only if there exists some j ∈ {1, 2, . . . , r} with
αfj, βjv > 0. (We are using here that everything is nonnegative and so no cancellations
are possible.) Equivalently, the supports of the outer products αj · βTj can be viewed as a
covering of the 1-entries of supp(S) by r 1-rectangles. Given this observation, the protocol
for Face-Vertex(P ) should be clear.

1. The prover announces an index j ∈ {1, 2, . . . , r}.

2. Alice accepts if and only if the fth component of αj is strictly positive.

3. Bob accepts if and only if the vth component of βj is strictly positive.

10This is called a nonnegative matrix factorization. It is the analog of the singular value decomposition
(SVD), but with the extra constraint that the factors are nonnegative matrices. It obviously only makes
sense to ask for such decompositions for nonnegative matrices (like S).
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The communication cost of the protocol is clearly log2 r. The key observation above implies
that there is a proof (i.e., an index j ∈ {1, 2, . . . , r}) accepted by both Alice and Bob if and
only if Bob’s vertex v does not belong to Alice’s face f .

It remains to prove that, whenever a polytope P admits an extended formulation with a
small number of inequalities, its slack matrix admits a low-rank nonnegative matrix factor-
ization.11 We’ll show this by exhibiting nonnegative r-vectors λf (for all faces f of P ) and
µv (for all vertices v of P ) such that Sfv = λTf µv for all f and v. In terms of Figure 3, the
λf ’s and µv’s correspond to the rows of T and columns of U , respectively.

The next task is to understand better how an extended formulation Q = {(x,y) :
Cx + Dy ≤ d} must be related to the original polytope P . Given that projecting Q onto
the variables x yields P , it must be that every supporting hyperplane of P is logically implied
by the inequalities that define Q. To see one way how this can happen, suppose there is a
non-negative r-vector λ ∈ Rr

+ with the following properties:

(P1) λTC = aT ;

(P2) λTD = 0;

(P3) λTd = b.

(P1)–(P3) imply that, for every (x,y) in Q (and so with Cx + Dy ≤ d), we have

λTC︸︷︷︸
=aT

x + λTD︸︷︷︸
=0

y ≤ λTd︸︷︷︸
=b

and hence aTx ≤ b (no matter what y is).
Nonnegative linear combinations λ of the constraints of Q that satisfy (P1)–(P3) are one

way in which the constraints of Q imply constraints on the values of x in the projection of Q.
A straightforward application of Farkas’s Lemma (see e.g. [1]) implies that such nonnegative
linear combinations are the only way in which the constraints of Q imply constraints on
the projection of Q.12 Put differently, whenever aTx ≤ b is a supporting hyperplane of P ,
there exists a nonnegative linear combination λ that proves it (i.e., that satisfies (P1)–(P3)).
This clarifies what the extended formulation Q really accomplishes: ranging over all λ ∈ Rr

+

satisfying (P2) generates all of the supporting hyperplanes a, b of P (with a and b arising as
λTC and λTd, respectively).

To define the promised λf ’s and µv’s, fix a face f of P with supporting hyperplane
aTx ≤ b. Since Q’s projection does not include any points not in P , the constraints of Q
imply this supporting hyperplane. By the previous paragraph, we can choose a nonnegative
vector λf so that (P1)–(P3) hold.

11The converse also holds, and might well be the easier direction to anticipate. See the Exercises for
details.

12Farkas’s Lemma is sometimes phrased as the Separating Hyperplane Theorem. It can also be thought
of as the feasibility version of strong linear programming duality.
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Now fix a vertex v of P . Since Q’s projection includes every point of P , there exists a
choice of yv such that (v,yv) ∈ Q. Define µv ∈ Rr

+ as the slack in Q’s constraints at the
point (v,yv):

µv = d−Cv −Dyv.

Since (v,yv) ∈ Q, µv is a nonnegative vector.
Finally, for every face f of P and vertex v of P , we have

λTf µv = λTf d︸︷︷︸
=b

−λTf Cv︸ ︷︷ ︸
=aT v

−λTf Dyv︸ ︷︷ ︸
=0

= b− aTv = Sfv,

as desired. This completes the second proof of Lemma 3.1.

4 A Lower Bound for the Correlation Polytope

4.1 Overview

Lemma 3.1 reduces the task of proving lower bounds on the size of extended formulations of
a polytope P to proving lower bounds on the nondeterministic communication complexity of
Face-Vertex(P ). The case study of the permutahedron (Section 1.2) serves as a caution-
ary tale here: the communication complexity of Face-Vertex(P ) is surprisingly low for
some complex-seeming polytopes, so proving strong lower bounds, when they exist, typically
requires work and a detailed understanding of the particular polytope of interest.

Fiorini et al. [4] were the first to use Yannakakis’s Lemma to prove lower bounds on the
size of extended formulations of interesting polytopes.13 We follow the proof plan of [4],
which has two steps.

1. First, we exhibit a polytope that is tailor-made for proving a nondeterministic com-
munication complexity lower bound on the corresponding Face-Vertex(P ) problem,
via a reduction from Disjointness. We’ll prove this step in full.

2. Second, we extend the consequent lower bound on the size of extended formulations to
other problems, such as the Traveling Salesman Problem (TSP), via reductions. These
reductions are bread-and-butter NP -completeness-style reductions; see the Exercises
for more details.

This two-step plan does not seem sufficient to resolve the motivating problem mentioned in
Section 1, the non-bipartite matching problem. For an NP -hard problem like TSP, we fully
expect all extended formulations of the convex hull of the characteristic vectors of solutions
to be exponential; otherwise, we could use linear programming to obtain a subexponential-
time algorithm for the problem (an unlikely result). The non-bipartite matching problem is
polynomial-time solvable, so it’s less clear what to expect. Rothvoss [14] proved that every
extended formulation of the convex hull of the perfect matchings of the complete graph

13This paper won the Best Paper Award at STOC ’12.
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has exponential size.14 The techniques in [14] are more sophisticated variations of the tools
covered in this lecture — a reader of these notes is well-positioned to move on to the proof
in [14].

4.2 Preliminaries

We describe a polytope P for which it’s relatively easy to prove nondeterministic commu-
nication complexity lower bounds for the corresponding Face-Vertex(P ) problem. The
polytope was studied earlier for other reasons [12, 2].

Given a 0-1 n-bit vector x, we consider the corresponding (symmetric and rank-1) outer
product xxT . For example, if x = 10101, then

xxT =


1 0 1 0 1
0 0 0 0 0
1 0 1 0 1
0 0 0 0 0
1 0 1 0 1

 .

For a positive integer n, we define COR as the convex hull of all 2n such vectors xxT (ranging
over x ∈ {0, 1}n). This is a polytope in Rn2

, and its vertices are precisely the points xxT

with x ∈ {0, 1}n.
Our goal is to prove the following result.

Theorem 4.1 ([4]) The nondeterministic communication complexity of Face-Vertex(COR)
is Ω(n).

This lower bound is clearly the best possible (up to a constant factor), since Bob can com-
municate his vertex to Alice using only n bits (by specifying the appropriate x ∈ {0, 1}n).

Lemma 3.1 then implies that every extended formulation of the COR polytope requires
2Ω(n) inequalities, no matter how many auxiliary variables are added. Note the dimension d
is Θ(n2), so this lower bound has the form 2Ω(

√
d).

Elementary reductions (see the Exercises) translate this extension complexity lower bound
for the COR polytope to a lower bound of 2Ω(

√
n) on the size of extended formulations of the

convex hull of characteristic vectors of n-point traveling salesman tours.

4.3 Some Faces of the Correlation Polytope

Next we establish a key connection between certain faces of the correlation polytope and
inputs to Disjointness. Throughout, n is a fixed positive integer.

Lemma 4.2 ([4]) For every subset S ⊆ {1, 2, . . . , n}, there is a face fS of COR such that:
for every R ⊆ {1, 2, . . . , n} with characteristic vector xR and corresponding vertex vR =
xRx

T
R of COR,

vR ∈ fS if and only if |S ∩R| = 1.

14This paper won the Best Paper Award at STOC ’14.
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That is, among the faces of COR are 2n faces that encode the “unique intersection property”
for each of the 2n subsets S of {1, 2, . . . , n}. Note that for a given S, the sets R with |S ∩R|
can be generated by (i) first picking a element of S; (ii) picking a subset of {1, 2, . . . , n} \ S.
Thus if |S| = k, there are k2n−k sets R with which it has a unique intersection.

Lemma 4.2 is kind of amazing, but also not too hard to prove.

Proof of Lemma 4.2: For every S ⊆ {1, 2, . . . , n}, we need to exhibit a supporting hyperplane
aTx ≤ b such that aTvR = b if and only if |S ∩R| = 1, where vR denotes xRx

T
R and xR the

characteristic vector of R ⊆ {1, 2, . . . , n}.
Fix S ⊆ {1, 2, . . . , n}. We develop the appropriate supporting hyperplane, in variables

y ∈ Rn2
, over several small steps.

1. For clarity, let’s start in the wrong space, with variables z ∈ Rn rather than y ∈ Rn2
.

Here z is meant to encode the characteristic vector of a set R ⊆ {1, 2, . . . , n}. One
sensible inequality to start with is ∑

i∈S

zi − 1 ≥ 0. (9)

For example, if S = {1, 3}, then this constraint reads z1 + z3 − 1 ≥ 0.

The good news is that for 0-1 vectors xR, this inequality is satisfied with equality if
and only if |S ∩ R| = 1. The bad news is that it does not correspond to a supporting
hyperplane: if S and R are disjoint, then xR violates the inequality. How can we
change the constraint so that it holds with equality for xR with |S ∩ R| = 1 and also
valid for all R?

2. One crazy idea is to square the left-hand side of (9):(∑
i∈S

zi − 1

)2

≥ 0. (10)

For example, if S = {1, 3}, then the constraint reads (after expanding) z2
1 +z2

3 +2z1z3−
2z1 − 2z3 + 1 ≥ 0.

The good news is that every 0-1 vector xR satisfies this inequality, and equality holds
if and only if |S ∩R| = 1. The bad news is that the constraint is non-linear and hence
does not correspond to a supporting hyperplane.

3. The obvious next idea is to “linearize” the previous constraint. Wherever the constraint
has a z2

i or a zi, we replace it by a variable yii (note these partially cancel out).
Wherever the constraint has a 2zizj (and notice for i 6= j these always come in pairs),
we replace it by a yij + yji. Formally, the constraint now reads

−
∑
i∈S

yii +
∑
i 6=j∈S

yij + 1 ≥ 0. (11)
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Note that the new variable set is y ∈ Rn2
. For example, if S = {1, 3}, then the new

constraint reads y13 + y31 − y11 − y33 ≥ −1.

A first observation is that, for y’s that are 0-1, symmetric, and rank-1, with y = zzT

(hence yij = zi · zj for i, j ∈ {1, 2, . . . , n}), the left-hand sides of (10) and (11) are
the same by definition. Thus, for y = xRx

T
R with x ∈ {0, 1}n, y satisfies the (linear)

inequality (11), and equality holds if and only if |S ∩R| = 1.

We have shown that, for every S ⊆ {1, 2, . . . , n}, the linear inequality (11) is satisfied by
every vector y ∈ Rn2

of the form y = xRx
T
R with x ∈ {0, 1}n. Since COR is by definition the

convex hull of such vectors, every point of COR satisfies (11). This inequality is therefore a
supporting hyperplane, and the face it induces contains precisely those vertices of the form
xRx

T
R with |S ∩R| = 1. This completes the proof. �

4.4 Face-Vertex(COR) and Unique-Disjointness

In the Face-Vertex(COR) problem, Alice receives a face f of COR and Bob a vertex v of
COR. In the 1-inputs, v 6∈ f ; in the 0-inputs, v ∈ F . Let’s make the problem only easier by
restricting Alice’s possible inputs to the 2n faces (one per subset S ⊆ {1, 2, . . . , n}) identified
in Lemma 4.2. In the corresponding matrix MU of this function, we can index the rows by
subsets S. Since every vertex of COR has the form y = xRx

T
R for R ⊆ {1, 2, . . . , n}, we can

index the columns of MU by subsets R. By Lemma 4.2, the entry (S,R) of the matrix MU

is 1 if |S ∩ R| 6= 1 and 0 of |S ∩ R| = 1. That is, the 0-entries of MU correspond to pairs
(S,R) that intersect in a unique element.

There is clearly a strong connection between the matrix MU above and the analogous
matrix MD for Disjointness. They differ on entries (S,R) with |S ∩ R| ≥ 2: these are
0-entries of MD but 1-entries of MU . In other words, MU is the matrix corresponding to
the communication problem ¬Unique-Intersection: do the inputs S and R fail to have
a unique intersection?

The closely related Unique-Disjointness problem is a “promise” version of Disjoint-
ness. The task here is to distinguish between:

(1) inputs (S,R) of Disjointness with |S ∩R| = 0;

(0) inputs (S,R) of Disjointness with |S ∩R| = 1.

For inputs that fall into neither case (with |S ∩R| > 1), the protocol is off the hook — any
output is considered correct. Since a protocol that solves Unique-Disjointness has to do
only less than one that solves ¬Unique-Intersection, communication complexity lower
bounds for former problem apply immediate to the latter.

We summarize the discussion of this section in the following proposition.

Proposition 4.3 ([4]) The nondeterministic communication complexity of Face-Vertex(COR)
is at least that of Unique-Disjointness.
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4.5 A Lower Bound for Unique-Disjointness

4.5.1 The Goal

One final step remains in our proof of Theorem 4.1, and hence of our lower bound on the
size of extended formulations of the correlation polytope.

Theorem 4.4 ([4, 7]) The nondeterministic communication complexity of Unique-Disjointness
is Ω(n).

4.5.2 Disjointness Revisited

As a warm-up, we revisit the standard Disjointness problem. Recall that, in Lecture #4,
we proved that the nondeterministic communication complexity of Disjointness is at least
n by a fooling set argument. Next we prove a slightly weaker lower bound, via an argument
that generalizes to Unique-Disjointness.

The first claim is that, of the 2n×2n = 4n possible inputs of Disjointness, exactly 3n of
them are 1-inputs. The reason is that the following procedure, which makes n 3-way choices,
generates every 1-input exactly once: independently for each coordinate i = 1, 2, . . . , n,
choose between the options (i) xi = yi = 0; (ii) xi = 1 and yi = 0; and (iii) xi = 0 and
yi = 1.

The second claim is that every 1-rectangle — every subset A of rows of MD and B of
columns of MD such that A × B contains only 1-inputs — has size at most 2n. To prove
this, let R = A × B be a 1-rectangle. We assert that, for every coordinate i = 1, 2, . . . , n,
either (i) xi = 0 for all x ∈ A or (ii) yi = 0 for all y ∈ B. That is, every coordinate has,
for at least one of the two parties, a “forced zero” in R. For if neither (i) nor (ii) hold
for a coordinate i, then since R is a rectangle (and hence closed under “mix and match”)
we can choose (x,y) ∈ R with xi = yi = 1; but this is a 0-input and R is a 1-rectangle.
This assertion implies that the following procedure, which makes n 2-way choices, generates
every 1-input of R (and possibly other inputs as well): independently for each coordinate
i = 1, 2, . . . , n, set the forced zero (xi = 0 in case (i) or yi = 0 in case (ii)) and choose a bit
for this coordinate in the other input.

These two claims imply that every covering of the 1-inputs by 1-rectangles requires at least
(3/2)n rectangles. Proposition 2.2 then implies a lower bound of Ω(n) on the nondeterministic
communication complexity of Disjointness.

4.5.3 Proof of Theorem 4.4

Recall that the 1-inputs (x,y) of Unique-Disjointness are the same as those of Disjoint-
ness (for each i, either xi = 0, yi = 0, or both). Thus, there are still exactly 3n 1-inputs.
The 0-inputs (x,y) of Unique-Disjointness are those with xi = yi = 1 in exactly one
coordinate i. We call all other inputs, where the promise fails to hold, *-inputs. By a 1-
rectangle, we now mean a rectangle with no 0-inputs (*-inputs are fine). With this revised
definition, it is again true that every nondeterministic communication protocol that solves
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Unique-Disjointness using c bits of communication induces a covering of the 1-inputs by
at most 2c 1-rectangles.

Lemma 4.5 Every 1-rectangle of Unique-Disjointness contains at most 2n 1-inputs.

As with the argument for Disjointness, Lemma 4.5 completes the proof of Theorem 4.4:
since there are 3n 1-inputs and at most 2n per 1-rectangle, every covering by 1-rectangles
requires at least (3/2)n rectangles. This implies that the nondeterministic communication
complexity of Unique-Disjointness is Ω(n).

Why is the proof of Lemma 4.5 harder than in Section 4.5.2? We can no longer easily
argue that, in a rectangle R = A × B, for each coordinate i, either xi = 0 for all x ∈ A or
yi = 0 for all y ∈ B. Assuming the opposite no longer yields a contraction: exhibiting x ∈ A
and y ∈ B with xi = yi = 1 does not necessarily contradict the fact that R is a 1-rectangle,
since (x,y) might be a *-input.

Proof of Lemma 4.5: The proof is one of those slick inductions that you can’t help but sit
back and admire.

We claim, by induction on k = 0, 1, 2, . . . , n, that if R = A×B is a 1-rectangle for which
all x ∈ A and y ∈ B have 0s in their last n− k coordinates, then the number of 1-inputs in
R is at most 2k. The lemma is equivalent to the case of k = n. The base case k = 0 holds,
because in this case the only possible input in R is (0,0).

For the inductive step, fix a 1-rectangle R = A× B in which the last n− k coordinates
of all x ∈ A and all y ∈ B are 0. To simplify notation, from here on we ignore the last n− k
coordinates of all inputs (they play no role in the argument).

Intuitively, we need to somehow “zero out” the kth coordinate of all inputs in R so that
we can apply the inductive hypothesis. This motivates focusing on the kth coordinate, and
we’ll often write inputs x ∈ A and y ∈ B as x′a and y′b, respectively, with x′,y′ ∈ {0, 1}k−1

and a, b ∈ {0, 1}. (Recall we’re ignoring that last n − k coordinates, which are now always
zero.)

First observe that, whenever (x′a,y′b) is a 1-input, we cannot have a = b = 1. Also:

(*) If (x′a,y′b) ∈ R is a 1-input, then R cannot contain both the inputs (x′0,y′1) and
(x′1,y′0).

For otherwise, R would also contain the 0-input (x′1,y′1), contradicting that R is a 1-
rectangle. (Since (x′a,y′b) is a 1-input, the unique coordinate of (x′1,y′1) with a 1 in both
inputs is the kth coordinate.)

The plan for the rest of the proof is to define two sets S1, S2 of 1-inputs — not necessarily
rectangles — such that:

(P1) the number of 1-inputs in S1 and S2 combined is at least that in R;

(P2) the inductive hypothesis applies to rect(S1) and rect(S2), where rect(S) denotes the
smallest rectangle containing a set S of inputs.15

15Equivalently, the closure of S under the “mix and match” operation on pairs of inputs. Formally,
rect(S) = X(S)×Y (S), whereX(S) = {x : (x,y) ∈ S for some y} and Y (S) = {y : (x,y) ∈ S for some x}.
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If we can find sets S1, S2 with properties (P1),(P2), then we are done: by the inductive
hypothesis, the rect(Si)’s have at most 2k−1 1-inputs each, the Si’s are only smaller, and
hence (by (P1)) R has at most 2k 1-inputs, as required.

We define the sets in two steps, focusing first on property (P1). Recall that every 1-input
(x,y) ∈ R has the form (x′1,y′0), (x′0,y′1), or (x′0,y′0). We put all 1-inputs of the first
type into a set S ′1, and all 1-inputs of the second type into a set S ′2. When placing inputs
of the third type, we want to avoid putting two inputs of the form (x′a,y′b) with the same
x′ and y′ into the same set (this would create problems in the inductive step). So, for an
input (x′0,y′0) ∈ R, we put it in S ′1 if and only if the input (x′1,y′0) was not already put
in S ′1; and we put it in S ′2 if and only if the input (x′0,y′1) was not already put in S ′2.
Crucially, observation (*) implies that R cannot contain two 1-inputs of the form (x′1,y′0)
and (x′0,y′1), so the 1-input (x′0,y′0) is placed in at least one of the sets S ′1, S

′
2. (It is

placed in both if R contains neither (x′1,y′0) nor (x′0,y′1).) By construction, the sets S ′1
and S ′2 satisfy property (P1).

We next make several observations about S ′1 and S ′2. By construction:

(**) for each i = 1, 2 and x′,y′ ∈ {0, 1}k−1, there is at most one input of S ′i of the form
(x′a,y′b).

Also, since S ′1, S
′
2 are subsets of the rectangle R, rect(S ′1), rect(S ′2) are also subsets of R.

Since R is a 1-rectangle, so are rect(S ′1), rect(S ′2). Also, since every input (x,y) of S ′i (and
hence rect(S ′i)) has yk = 0 (for i = 1) or xk = 0 (for i = 2), the kth coordinate contributes
nothing to the intersection of any inputs of rect(S ′1) or rect(S ′2).

Now obtain Si from S ′i (for i = 1, 2) by zeroing out the kth coordinate of all inputs. Since
the S ′i’s only contain 1-inputs, the Si’s only contain 1-inputs. Since property (**) implies
that |Si| = |S ′i| for i = 1, 2, we conclude that property (P1) holds also for S1, S2.

Moving on to property (P2), since rect(S ′1), rect(S ′2) contain no 0-inputs and contain only
inputs with no intersection in the kth coordinate, rect(S1), rect(S2) contain no 0-inputs.16

Finally, since all inputs of S1, S2 have zeroes in their final n − k + 1 coordinates, so do all
inputs of rect(S1), rect(S2). The inductive hypothesis applies to rect(S1) and rect(S2), so
each of them has at most 2k−1 1-inputs. This implies the inductive step and completes the
proof. �
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