
CS369E: Communication Complexity
(for Algorithm Designers)

Lecture #6: Data Structure Lower Bounds∗

Tim Roughgarden†

February 12 & 19, 2015

1 Preamble

Next we discuss how to use communication complexity to prove lower bounds on the per-
formance — meaning space, query time, and approximation — of data structures. Our case
study will be the high-dimensional approximate nearest neighbor problem.

There is a large literature on data structure lower bounds. There are several different
ways to use communication complexity to prove such lower bounds, and we’ll unfortunately
only have time to discuss one of them. For example, we discuss only a static data structure
problem — where the data structure can only be queried, not modified — and lower bounds
for dynamic data structures tend to use somewhat different techniques. See [8, 10] for some
starting points for further reading.

We focus on the approximate nearest neighbor problem for a few reasons: it is obviously
a fundamental problem, that gets solved all the time (in data mining, for example); there
are some non-trivial upper bounds; for certain parameter ranges, we have matching lower
bounds; and the techniques used to prove these lower bounds are representative of work
in the area — asymmetric communication complexity and reductions from the “Lopsided
Disjointness” problem.

2 The Approximate Nearest Neighbor Problem

In the nearest neighbor problem, the input is a set S of n points that lie in a metric space
(X, `). Most commonly, the metric space is Euclidean space (Rd with the `2 norm). In these
lectures, we’ll focus on the Hamming cube, where X = {0, 1}d and ` is Hamming distance.

∗ c©2015, Tim Roughgarden.
†Department of Computer Science, Stanford University, 474 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

1

On the upper bound side, the high-level ideas (related to “locality sensitive hashing (LSH)”)
we use are also relevant for Euclidean space and other natural metric spaces — we’ll get
a glimpse of this at the very end of the lecture. On the lower bound side, you won’t be
surprised to hear that the Hamming cube is the easiest metric space to connect directly
to the standard communication complexity model. Throughout the lecture, you’ll want to
think of d as pretty big — say d =

√
n.

Returning to the general nearest neighbor problem, the goal is to build a data structure
D (as a function of the point set S ⊆ X) to prepare for all possible nearest neighbor queries.
Such a query is a point q ∈ X, and the responsibility of the algorithm is to use D to return
the point p∗ ∈ S that minimizes `(p, q) over p ∈ S. One extreme solution is to build no
data structure at all, and given q to compute p∗ by brute force. Assuming that computing
`(p, q) takes O(d) time, this query algorithm runs in time O(dn). The other extreme is
to pre-compute the answer to every possible query q, and store the results in a look-up
table. For the Hamming cube, this solution uses Θ(d2d) space, and the query time is that
of one look-up in this table. The exact nearest neighbor problem is believed to suffer from
the “curse of dimensionality,” meaning that a non-trivial query time (sublinear in n, say)
requires a data structure with space exponential in d.

There have been lots of exciting positive results for the (1 + ε)-approximate version of
the nearest neighbor problem, where the query algorithm is only required to return a point
p with `(p, q) ≤ (1 + ε)`(p∗, q), where p∗ is the (exact) nearest neighbor of q. This is the
problem we discuss in these lectures. You’ll want to think of ε as a not-too-small constant,
perhaps 1 or 2. For many of the motivating applications of the nearest-neighbor problem —
for example, the problem of detecting near-duplicate documents (e.g., to filter search results)
— such approximate solutions are still practically relevant.

3 An Upper Bound: Biased Random Inner Products

In this section we present a non-trivial data structure for the (1 + ε)-approximate nearest
neighbor problem in the Hamming cube. The rough idea is to hash the Hamming cube and
then precompute the answer for each of the hash table’s buckets — the trick is to make sure
that nearby points are likely to hash to the same bucket. Section 4 proves a sense in which
this data structure is the best possible: no data structure for the problem with equally fast
query time uses significantly less space.

3.1 The Key Idea (via a Public-Coin Protocol)

For the time being, we restrict attention to the decision version of the (1+ε)-nearest neighbor
problem. Here, the data structure construction depends both on the point set S ⊆ {0, 1}d
and on a given parameter L ∈ {0, 1, 2, . . . , d}. Given a query q, the algorithm only has to
decide correctly between the following cases:

1. There exists a point p ∈ S with `(p, q) ≤ L.

2

2. `(p, q) ≥ (1 + ε)L for every point p ∈ S.

If neither of these two cases applies, then the algorithm is off the hook (either answer is
regarded as correct). We’ll see in Section 3.3 how, using this solution as an ingredient, we
can build a data structure for the original version of the nearest neighbor problem.

Recall that upper bounds on communication complexity are always suspect — by design,
the computational model is extremely powerful so that lower bounds are as impressive as
possible. There are cases, however, where designing a good communication protocol reveals
the key idea for a solution that is realizable in a reasonable computational model. Next is
the biggest example of this that we’ll see in the course.

In the special case where S contains only one point, the decision version of the (1 + ε)-
approximate nearest neighbor problem resembles two other problems that we’ve studied
before in other contexts, one easy and one hard.

1. Equality. Recall that when Alice and Bob just want to decide whether their inputs
are the same or different — equivalently, deciding between Hamming distance 0 and
Hamming distance at least 1 — there is an unreasonably effective (public-coin) ran-
domized communication protocol for the problem. Alice and Bob interpret the first 2n
public coins as two random n-bits strings r1, r2. Alice sends the inner product modulo
2 of her input x with r1 and r2 (2 bits) to Bob. Bob accepts if and only if the two
inner products modulo 2 of his input y with r1, r2 match those of Alice. This protocol
never rejects inputs with x = y, and accepts inputs with x 6= y with probability 1/4.

2. Gap Hamming. Recall in this problem Alice and Bob want to decide between the
cases where the Hamming distance between their inputs is at most n

2
−
√
n, or at least

n
2

+
√
n. We proved in Lecture #3 that this problem is hard for 1-way communication

protocols (via a clever reduction from Index); it is also hard for general communication
protocols [2, 11, 12]. Note however that the gap between the two cases is very small,
corresponding to ε ≈ 2√

n
. In the decision version of the (1 + ε)-approximate nearest

neighbor problem, we’re assuming a constant-factor gap in Hamming distance between
the two cases, so there’s hope that the problem is easier.

Consider now the communication problem where Alice and Bob want to decide if the
Hamming distance `H(x,y) between their inputs x,y ∈ {0, 1}d is at most L or at least
(1 + ε)L. We call this the ε-Gap Hamming problem. We analyze the following protocol;
we’ll see shortly how to go from this protocol to a data structure.

1. Alice and Bob use the public random coins to choose s random stringsR = {r1, . . . , rs} ∈
{0, 1}d, where d = Θ(ε−2). The strings are not uniformly random: each entry is chosen
independently, with probability 1/2L of being equal to 1.

2. Alice sends the s inner products (modulo 2) 〈x, r1〉, . . . , 〈x, rs〉 of her input and the
random strings to Bob — a “hash value” hR(x) ∈ {0, 1}s.

3

3. Bob accepts if and only if the Hamming distance between the corresponding hash value
hR(y) of his input — the s inner products (modulo 2) of y with the random strings in
R — differs from hR(x) in only a “small” (TBD) number of coordinates.

Intuitively, the goal is to modify our randomized communication protocol for Equality so
that it continues to accept strings that are close to being equal. A natural way to do this is to
bias the coefficient vectors significantly more toward 0 than before. For example, if x,y differ
in only a single bit, then choosing r uniformly at random results in 〈x, r〉 6≡ 〈y, r〉 mod 2
with probability 1/2 (if and only if r has a 1 in the coordinate where x,y differ). With
probability 1/2L of a 1 in each coordinate of r, the probability that 〈x, r〉 6≡ 〈y, r〉 mod 2 is
only 1/2L. Unlike our Equality protocol, this protocol for ε-Gap Hamming has two-sided
error.

For the analysis, it’s useful to think of each random choice of a coordinate rji as occurring
in two stages: in the first stage, the coordinate is deemed relevant with probability 1/L and
irrelevant otherwise. In stage 2, rji is set to 0 if the coordinate is irrelevant, and chosen
uniformly from {0, 1} if the coordinate is relevant. We can therefore think of the protocol
as: (i) first choosing a subset of relevant coordinates; (ii) running the old Equality protocol
on these coordinates only. With this perspective, we see that if `H(x,y) = ∆, then

Prrj [〈rj,x〉 6≡ 〈rj,y〉 mod 2] =
1

2

((
1−

(
1− 1

L

)∆
))

(1)

for every rj ∈ R. In (1), the quantity inside the outer parentheses is exactly the probability
that at least one of the ∆ coordinates on which x,y differ is deemed relevant. This is a
necessary condition for the event 〈rj,x〉 6≡ 〈rj,y〉 mod 2 and, in this case, the conditional
probability of this event is exactly 1

2
(as in the old Equality protocol).

The probability in (1) is an increasing function of ∆, as one would expect. Let t denote
the probability in (1) when ∆ = L. We’re interested in how much bigger this probability is
when ∆ is at least (1 + ε)L. We can take the difference between these two cases and bound
it below using the fact that 1− x ∈ [e−2x, e−x] for x ∈ [0, 1]:

1
2

(

1− 1

L

)L
︸ ︷︷ ︸

≥e−2

1−
(

1− 1

L

)εL
︸ ︷︷ ︸

≤e−ε

 ≥ 1

2ε2
(
1− e−ε

)
:= h(ε).

Note that h(ε) is a constant, depending on ε only. Thus, with s random strings, if `H(x,y) ≤
∆ then we expect ts of the random inner products (modulo 2) to be different; if `H(x,y) ≥
(1 + ε)∆, then we expect at least (t + h(ε))s of them to be different. A routine application
of Chernoff bounds implies the following.

Corollary 3.1 Define the hash function hR as in the communication protocol above. If
s = Ω(1

ε2
log 1

δ
), then with probability at least 1− δ over the choice of R:

4

(i) If `H(x,y) ≤ L, then `H(h(x), h(y)) ≤ (t+ 1
2
h(ε)))s.

(ii) If `H(x,y) ≥ (1 + ε)L, then `H(h(x), h(y)) > (t+ 1
2
h(ε))s.

We complete the communication protocol above by defining “small” in the third step as
(t+ 1

2
h(ε))s. We conclude that the ε-Gap Hamming problem can be solved by a public-coin

randomized protocol with two-sided error and communication cost Θ(ε−2).

3.2 The Data Structure (Decision Version)

We now show how to translate the communication protocol above into a data structure
for the (1 + ε)-nearest neighbor problem. For the moment, we continue to restrict to the
decision version of the problem, for an a priori known value of L ∈ {0, 1, 2, . . . , d}. All we
do is precompute the answers for all possible hash values of a query (an “inverted index”).

Given a point set P of n points in {0, 1}d, we choose a set R of s = Θ(ε−2 log n) random
strings r1, . . . , rs according to the distribution of the previous section (with a “1” chosen with
probability 1/2L). We again define the hash function hR : {0, 1}d → {0, 1}s by setting the
jth coordinate of hR(x) to 〈rj,x〉 mod 2. We construct a table with 2s = nΘ(ε−2) buckets,
indexed by s-bit strings.1 Then, for each point p ∈ P , we insert p into every bucket
b ∈ {0, 1}s for which `H(hR(p),b) ≤ (t + 1

2
h(ε))s, where t is defined as in the previous

section (as the probability in (1) with ∆ = L). This preprocessing requires nΘ(ε−2) time.
With this data structure in hand, answering a query q ∈ {0, 1}d is easy: just compute

the hash value hR(q) and return an arbitrary point of the corresponding bucket, or “none”
if this bucket is empty.

For the analysis, think of an adversary who chooses a query point q ∈ {0, 1}d, and then
we subsequently flip our coins and build the above data structure. (This is the most common
way to analyze hashing, with the query independent of the random coin flips used to choose
the hash function.) Choosing the hidden constant in the definition of s appropriately and
applying Corollary 3.1 with δ = 1

n2 , we find that, for every point p ∈ P , with probability at
least 1− 1

n2 , p is in h(q) (if `H(p,q) ≤ L) or is not in h(q) (if `h(p,q) ≥ (1 + ε)L). Taking
a Union Bound over the n points of P , we find that the data structure correctly answers the
query q with probability at least 1− 1

n
.

Before describing the full data structure, let’s take stock of what we’ve accomplished
thus far. We’ve shown that, for every constant ε > 0, there is a data structure for the
decision version of the (1 + ε)-nearest neighbor problem that uses space nO(ε−2), answers a
query with a single random access to the data structure, and for every query is correct with
high probability. Later in this lecture, we show a matching lower bound: every (possibly
randomized) data structure with equally good search performance for the decision version
of the (1 + ε)-nearest neighbor problem has space nΩ(ε−2). Thus, smaller space can only be
achieved by increasing the query time (and there are ways to do this, see e.g. [7]).

1Note the frightening dependence of the space on 1
ε . This is why we suggested thinking of ε as a not-too-

small constant.

5

3.3 The Data Structure (Full Version)

The data structure of the previous section is an unsatisfactory solution to the (1+ ε)-nearest
neighbor problem in two respects:

1. In the real problem, there is no a priori known value of L. Intuitively, one would like
to take L equal to the actual nearest-neighbor distance of a query point q, a quantity
that is different for different q’s.

2. Even for the decision version, the data structure can answer some queries incorrectly.
Since the data structure only guarantees correctness with probability at least 1 − 1

n

for each query q, it might be wrong on as many as 2d/n different queries. Thus, an
adversary that knows the data structure’s coin flips can exhibit a query that the data
structure gets wrong.

The first fix is straightforward: just build ≈ d copies of the data structure of Section 3.2,
one for each relevant value of L.2 Given a query q, the data structure now uses binary search
over L to compute a (1 + ε)-nearest neighbor of q; see the Exercises for details. Answering a
query thus requires O(log d) lookups to the data structure. This also necessitates blowing up
the number s of random strings used in each data structure by a Θ(log log d) factor — this
reduces the failure probability of a given lookup by a log d factor, enabling a Union Bound
over log d times as many lookups as before.3

A draconian approach to the second problem is to again replicate the data structure
above Θ(d) times. Each query q is asked in all Θ(d) copies, and majority vote is used to
determine the final answer. Since each copy is correct on each of the 2d possible queries with
probability at least 1− 1

n
> 2

3
, the majority vote is wrong on a given query with probability

at most inverse exponential in d. Taking a Union Bound over the 2d possible queries shows
that, with high probability over the coin flips used to construct the data structure, the data
structure answers every query correctly. Put differently, for almost all outcomes of the coin
flips, not even an adversary that knows the coin flip outcomes can produce a query on which
the data structure is incorrect. This solution blows up both the space used and the query
time by a factor of Θ(d).

An alternative approach is to keep Θ(d) copies of the data structure as above but, given a
query q, to answer the query using one of the Θ(d) copies chosen uniformly at random. With
this solution, the space gets blown up by a factor of Θ(d) but the query time is unaffected.
The correctness guarantee is now slightly weaker. With high probability over the coin flips
used to construct the data structure (in the preprocessing), the data structure satisfies:
for every query q ∈ {0, 1}d, with probability at least 1 − Θ(1

n
) over the coins flipped at

query time, the data structure answers the query correctly (why?). Equivalently, think of an
adversary who is privy to the outcomes of the coins used to construct the data structure, but

2For L ≥ d/(1 + ε), the data structure can just return an arbitrary point of P . For L = 0, when the data
structure of Section 3.2 is not well defined, a standard data structure for set membership, such as a perfect
hash table [4], can be used.

3With some cleverness, this log log d factor can be avoided – see the Exercises.

6

not those used to answer queries. For most outcomes of the coins used in the preprocessing
phase, no matter what query the adversary suggests, the data structure answers the query
correctly with high probability.

To put everything together, the data structure for a fixed L (from Section 3.2) requires
nΘ(ε−2) space, the first fix blows up the space by a factor of Θ(d log d), and the second
fix blows up the space by another factor of d. For the query time, with the alternative
implementation of the second fix, answering a query involves O(log d) lookups into the data
structure. Each lookup involves computing a hash value, which in turn involves computing
inner products (modulo 2) with s = Θ(ε−2 log n log log d) random strings. Each such inner
product requires O(d) time.

Thus, the final scorecard for the data structure is:

• Space: O(d2 log d) · nΘ(ε−2).

• Query time: O(ε−2d log n log log d).

For example, for the suggested parameter values of d = nc for a constant c ∈ (0, 1) and ε
a not-too-small constant, we obtain a query time significantly better than the brute-force
(exact) solution (which is Θ(dn)), while using only a polynomial amount of space.

4 Lower Bounds via Asymmetric Communication Com-

plexity

We now turn our attention from upper bounds for the (1 + ε)-nearest neighbor problem
to lower bounds. We do this in three steps. In Section 4.1, we introduce a model for
proving lower bounds on time-space trade-offs in data structures — the cell probe model. In
Section 4.2, we explain how to deduce lower bounds in the cell probe model from a certain
type of communication complexity lower bound. Section 4.3 applies this machinery to the
(1+ε)-approximate nearest neighbor problem, and proves a sense in which the data structure
of Section 3 is optimal: every data structure for the decision version of the problem that uses
O(1) lookups per query has space nΩ(ε−2). Thus, no polynomial-sized data structure can be
both super-fast and super-accurate for this problem.

4.1 The Cell Probe Model

4.1.1 Motivation

The most widely used model for proving data structure lower bounds is the cell probe model,
introduced by Yao — two years after he developed the foundations of communication com-
plexity [13] — in the paper “Should Tables Be Sorted?” [14].4 The point of this model is
to prove lower bounds for data structures that allow random access. To make the model as

4Actually, what is now called the cell probe model is a bit stronger than the model proposed in [14].

7

1" 2" 1" 3" 2" 3"

(a) Sorted Array

1" 2" 3" 1" 2" 3"
(b) Unsorted Array

Figure 1: For n = 3 and k = 2, it is suboptimal to store the array elements in sorted order.

powerful as possible, and hence lower bounds for it as strong as possible (cf., our commu-
nication models), a random access to a data structure counts as 1 step in this model, no
matter how big the data structure is.

4.1.2 Some History

To explain the title of [14], suppose your job is to store k elements from a totally ordered
universe of n elements ({1, 2, . . . , n}, say) in an array of length k. The goal is to minimize
the worst-case number of array accesses necessary to check whether or not a given element
is in the array, over all subsets of k elements that might be stored and over the n possible
queries.

To see that this problem is non-trivial, suppose n = 3 and k = 2. One strategy is to
store the pair of elements in sorted order, leading to the three possible arrays in Figure 1(a).
This yields a worst-case query time of 2 array accesses. To see this, suppose we want to
check whether or not 2 is in the array. If we initially query the first array element and find
a “1,” or if we initially query the second array element and find a “3,” then we can’t be sure
whether or not 2 is in the array.

Suppose, on the other hand, our storage strategy is as shown in Figure 1(b). Whichever
array entry is queried first, the answer uniquely determines the other array entry. Thus,
storing the table in a non-sorted fashion is necessary to achieve the optimal worst-case query
time of 1. On the other hand, if k = 2 and n = 4, storing the elements in sorted order (and
using binary search to answer queries) is optimal!5

4.1.3 Formal Model

In the cell problem model, the goal is to encode a “database” D in order to answer a set Q
of queries. The query set Q is known up front; the encoding scheme must work (in the sense
below) for all possible databases.

For example, in the (1 + ε)-approximate nearest neighbor problem, the database corre-
sponds to the point set P ⊆ {0, 1}d, while the possible queries Q correspond to the elements

5Yao [14] also uses Ramsey theory to prove that, provided the universe size is a sufficiently (really, really)
large function of the array size, then binary search on a sorted array is optimal. This result assumes that
no auxiliary storage is allowed, so solutions like perfect hashing [4] are ineligible. If the universe size is not
too much larger than the array size, then there are better solutions [3, 5, 6], even when there is no auxiliary
storage.

8

of {0, 1}d. Another canonical example is the set membership problem: here, D is a subset
of a universe U , and each query q ∈ Q asks “is i ∈ D?” for some element i ∈ U .

A parameter of the cell probe model is the word size w; more on this shortly. Given
this parameter, the design space consists of the ways to encode databases D as s cells of
w bits each. We can view such an encoding as an abstract data structure representing the
database, and we view the number s of cells as the space used by the encoding. To be a valid
encoding, it must be possible to correctly answer every query q ∈ Q for the database D by
reading enough bits of the encoding. A query-answering algorithm accesses the encoding by
specifying the name of a cell; in return, the algorithm is given the contents of that cell. Thus
every access to the encoding yields w bits of information. The query time of an algorithm
(with respect to an encoding scheme) is the maximum, over databases D (of a given size)
and queries q ∈ Q, number of accesses to the encoding used to answer a query.

For example, in the original array example from [14] mentioned above, the word size w is
dlog2 ne— just enough to specify the name of an element. The goal in [14] was, for databases
consisting of k elements of the universe, to understand when the minimum-possible query
time is dlog2 ke under the constraint that the space is k.6

Most research on the cell-probe model seeks time-space trade-offs with respect to a fixed
value for the word size w. Most commonly, the word size is taken large enough so that a
single element of the database can be stored in a single cell, and ideally not too much larger
than this. For nearest-neighbor-type problems involving n-point sets in the d-dimensional
hypercube, this guideline suggests taking w to be polynomial in max{d, log2 n}.

For this choice of w, the data structure in Section 3.2 that solves the decision version of
the (1 + ε)-approximate nearest neighbor problem yields a (randomized) cell-probe encoding
of point sets with space nΘ(ε−2) and query time 1. Cells of this encoding correspond to all
possible s = Θ(ε−2 log n)-bit hash values hR(q) of a query q ∈ {0, 1}d, and the contents of
a cell name an arbitrary point p ∈ P with hash value hR(p) sufficiently close (in Hamming
distance in {0, 1}s) to that of the cell’s name (or “NULL” if no such p exists). The rest of
this lecture proves a matching lower bound in the cell-probe model: constant query time can
only be achieved by encodings (and hence data structures) that use nΩ(ε−2) space.

4.1.4 From Data Structures to Communication Protocols

Our goal is to derive data structure lower bounds in the cell-probe model from communi-
cation complexity lower bounds. Thus, we need to extract low-communication protocols
from good data structures. Similar to our approach last lecture, we begin with a contrived
communication problem to forge an initial connection. Later we’ll see how to prove lower
bounds for the contrived problem via reductions from other communication problems that
we already understand well.

Fix an instantiation of the cell probe model – i.e., a set of possible databases and possible
queries. For simplicity, we assume that all queries are Boolean. In the corresponding Query-
Database problem, Alice gets a query q and Bob gets a database D. (Note that in all

6The model in [14] was a bit more restrictive — cells were required to contain names of elements in the
database, rather than arbitrary dlog2 ne-bit strings.

9

natural examples, Bob’s input is much bigger than Alice’s.) The communication problem is
to compute the answer to q on the database D.

We made up the Query-Database problem so that the following lemma holds.

Lemma 4.1 Consider a set of databases and queries so that there is a cell-probe encoding
with word size w, space s, and query time t. Then, there is a communication protocol for
the corresponding Query-Database problem with communication at most

t log2 s︸ ︷︷ ︸
bits sent by Alice

+ tw︸︷︷︸
bits sent by Bob

.

The proof is the obvious simulation: Alice simulates the query-answering algorithm, sending
at most log2 s bits to Bob specify each cell requested by the algorithm, and Bob sends w
bits back to Alice to describe the contents of each requested cell. By assumption, they only
need to go back-and-forth at most t times to identify the answer to Alice’s query q.

Lemma 4.1 reduces the task of proving data structure lower bounds to proving lower
bounds on the communication cost of protocols for the Query-Database problem.7

4.2 Asymmetric Communication Complexity

Almost all data structure lower bounds derived from communication complexity use asym-
metric communication complexity. This is just a variant of the standard two-party model
where we keep track of the communication by Alice and by Bob separately. The most com-
mon motivation for doing this is when the two inputs have very different sizes, like in the
protocol used to prove Lemma 4.1 above.

4.2.1 Case Study: Index

To get a feel for asymmetric communication complexity and lower bound techniques for it,
let’s revisit an old friend, the Index problem. In addition to the application we saw earlier
in the course, Index arises naturally as the Query-Database problem corresponding to
the membership problem in data structures.

Recall that an input of Index gives Alice an index i ∈ {1, 2, . . . , n}, specified using
≈ log2 n bits, and Bob a subset S ⊆ {1, 2, . . . , n}, or equivalently an n-bit vector.8 In
Lecture #2 we proved that the communication complexity of Index is Ω(n) for one-way
randomized protocols with two-sided error — Bob must send almost his entire input to Alice

7The two-party communication model seems strictly stronger than the data structure design problem that
it captures — in a communication protocol, Bob can remember which queries Alice asked about previously,
while a (static) data structure cannot. An interesting open research direction is to find communication
models and problems that more tightly capture data structure design problems, thereby implying strong
lower bounds.

8We’ve reversed the roles of the players relative to the standard description we gave in Lectures #1–2.
This reverse version is the one corresponding to the Query-Database problem induced by the membership
problem.

10

for Alice to have a good chance of computing her desired index. This lower bound clearly
does not apply to general communication protocols, since Alice can just send her log2 n-
bit input to Bob. It is also easy to prove a matching lower bound on deterministic and
nondeterministic protocols (e.g., by a fooling set argument).

We might expect a more refined lower bound to hold: to solve Index, not only do the
players have to send at least log2 n bits total, but more specifically Alice has to send at least
log2 n bits to Bob. Well not quite: Bob could always send his entire input to Alice, using
n bits of communication while freeing Alice to use essentially no communication. Revising
our ambition, we could hope to prove that in every Index protocol, either (i) Alice has to
communicate most of her input; or (ii) Bob has to communicate most of his input. The next
result states that this is indeed the case.

Theorem 4.2 ([9]) For every δ > 0, there exists a constant N = N(δ) such that, for every
n ≥ N and every randomized communication protocol with two-sided error that solves Index
with n-bit inputs, either:

(i) in the worst case (over inputs and protocol randomness), Alice communicates at least
δ log2 n bits; or

(ii) in the worst case (over inputs and protocol randomness), Bob communicates at least
n1−2δ bits.9

Loosely speaking, Theorem 4.2 states that the only way Alice can get away with sending
o(log n) bits of communication is if Bob sends at least n1−o(1) bits of communication.

For simplicity, we’ll prove Theorem 4.2 only for deterministic protocols. The lower bound
for randomized protocols with two-sided error is very similar, just a little messier (see [9]).

Conceptually, the proof of Theorem 4.2 has the same flavor as many of our previous lower
bounds, and is based on covering-type arguments. The primary twist is that rather than
keeping track only of the size of monochromatic rectangles, we keep track of both the height
and width of such rectangles. For example, we’ve seen in the past that low-communication
protocols imply the existence of a large monochromatic rectangle — if the players haven’t had
the opportunity to speak much, then an outside observer hasn’t had the chance to eliminate
many inputs as legitimate possibilities. The next lemma proves an analog of this, with the
height and width of the monochromatic rectangle parameterized by the communication used
by Alice and Bob, respectively.

Lemma 4.3 (Richness Lemma [9]) Let f : X × Y → {0, 1} be a Boolean function with
corresponding X × Y 0-1 matrix M(f). Assume that:

(1) M(f) has at least v columns that each have at least u 1-inputs.10

(2) There is a deterministic protocol that computes f in which Alice and Bob always send
at most a and b bits, respectively.11

9From the proof, it will be evident that n1−2δ can be replaced by n1−cδ for any constant c > 1.
10Such a matrix is sometimes called (u, v)-rich.
11This is sometimes called an [a, b]-protocol.

11

Then, M(f) has a 1-rectangle A×B with |A| ≥ u
2a

and |B| ≥ v
2a+b

.

The proof of Lemma 4.3 is a variation on the classic argument that a protocol computing
a function f induces a partition of the matrix M(f) into monochromatic rectangles. Let’s
recall the inductive argument. Let z be a transcript-so-far of the protocol, and assume by
induction that the inputs (x,y) that lead to z form a rectangle A × B. Assume that Alice
speaks next (the other case is symmetric). Partition A into A0, A1, with Aη the inputs x ∈ A
such Alice sends the bit η next. (As always, this bit depends only on her input x and the
transcript-so-far z.) After Alice speaks, the inputs consistent with the resulting transcript
are either A0 × B or A1 × B — either way, a rectangle. All inputs that generate the same
final transcript z form a monochromatic rectangle — since the protocol’s output is constant
across these inputs and it computes the function f , f is also constant across these inputs.

Now let’s refine this argument to keep track of the dimensions of the monochromatic
rectangle, as a function of the number of times that each of Alice and Bob speak.

Proof of Lemma 4.3: We proceed by induction on the number of steps of the protocol.
Suppose the protocol has generated the transcript-so-far z and that A× B is the rectangle
of inputs consistent with this transcript. Suppose that at least c of the columns of B have
at least d 1-inputs in rows of A (possibly with different rows for different columns).

For the first case, suppose that Bob speaks next. Partition A×B into A×B0 and A×B1,
where Bη are the inputs y ∈ B such that (given the transcript-so-far z) Bob sends the bit η.
At least one of the sets B0, B1 contains at least c/2 columns that each contain at least d
1-inputs in the rows of A (Figure 2(a)).

For the second case, suppose that Alice speaks. Partition A×B into A0×B and A1×B.
It is not possible that both (i) A0 × B has strictly less that c/2 columns with d/2 or more
1-inputs in the rows of A0 and (ii) A1 × B has strictly less that c/2 columns with d/2 or
more 1-inputs in the rows of A1. For if both (i) and (ii) held, then A × B would have less
than c columns with d or more 1-inputs in the rows of A, a contradiction (Figure 2(b)).

By induction, we conclude that there is a 1-input (x,y) such that, at each point of
the protocol’s execution on (x,y) (with Alice and Bob having sent α and β bits so-far,
respectively), the current rectangle A×B of inputs consistent with the protocol’s execution
has at least v/2α+β columns (in A) that each contain at least u/2α 1-inputs (among the rows
of B). Since the protocol terminates with a monochromatic rectangle of M(f) and with
α ≤ a, β ≤ b, the proof is complete. �

Lemma 4.3 and some simple calculations prove Theorem 4.2.

Proof of Theorem 4.2: We first observe that the matrix M(Index) has a set of
(
n
n/2

)
columns

that each contain n/2 1-inputs: choose the columns (i.e., inputs for Bob) that correspond
to subsets S ⊆ {1, 2, . . . , n} of size n/2 and, for such a column S, consider the rows (i.e.,
indices for Alice) that correspond to the elements of S.

Now suppose for contradiction that there is a protocol that solves Index in which Alice
always sends at most a = δ log2 n bits and Bob always sends at most b = n1−2δ bits. Invoking

12

B0#

≥#d#1’s#in#each#

B1#

(a) When Bob Speaks

c"columns"

≥"d"1’s"in"each"

A0"

A1"

(b) When Alice Speaks

Figure 2: Proof of the Richness Lemma (Lemma 4.3). When Bob speaks, at least one of the
corresponding subrectangles has at least c/2 columns that each contain at least d 1-inputs.
When Alice speaks, at least one of the corresponding subrectangles has at least c/2 columns
that each contain at least d/2 1-inputs.

Lemma 4.3 proves that the matrix M(Index) has a 1-rectangle of size at least

n

2
· 1

2a︸︷︷︸
=n−δ

×
(
n

n/2

)
︸ ︷︷ ︸
≈2n/

√
n

· 1

2a+b︸︷︷︸
=n−δ·2−n1−2δ

= 1
2
n1−δ × c22n−n

1−2δ

,

where c2 > 0 is a constant independent of n. (We’re using here that n ≥ N(δ) is sufficiently
large.)

On the other hand, how many columns can there be in a 1-rectangle with 1
2
n1−δ rows?

If these rows correspond to the set S ⊆ {1, 2, . . . , n} of indices, then every column of the
1-rectangle must correspond to a superset of S. There are

2n−|S| = 2n−
1
2
n1−δ

of these. But

c22n−n
1−2δ

> 2n−
1
2
n1−δ

,

for sufficiently large n, providing the desired contradiction. �

Does the asymmetric communication complexity lower bound in Theorem 4.2 have any
interesting implications? By Lemma 4.1, a data structure that supports membership queries
with query time t, space s, and word size w induces a communication protocol for Index in

13

which Alice sends at most t log2 s bits and Bob sends at most tw bits. For example, suppose
t = Θ(1) and w at most poly-logarithmic in n. Since Bob only sends tw bits in the induced
protocol for Index, he certainly does not send n1−2δ bits.12 Thus, Theorem 4.2 implies that
Alice must send at least δ log2 n bits in the protocol. This implies that

t log2 s ≥ δ log2 n

and hence s ≥ nδ/t. The good news is that this is a polynomial lower bound for every
constant t. The bad news is that even for t = 1, this argument will never prove a super-
linear lower bound. We don’t expect to prove a super-linear lower bound in the particular
case of the membership problem, since there is a data structure for this problem with constant
query time and linear space (e.g., perfect hashing [4]). For the (1 + ε)-approximate nearest
neighbor problem, on the other hand, we want to prove a lower bound of the form nΩ(ε−2). To
obtain such a super-linear lower bound, we need to reduce from a communication problem
harder than Index— or rather, a communication problem in which Alice’s input is bigger
than log2 n and in which she still reveals almost her entire input in every communication
protocol induced by a constant-query data structure.

4.2.2 (k, `)-Disjointness

A natural idea for modifying Index so that Alice’s input is bigger is to give Alice multiple
indices; Bob’s input remains an n-bit vector. The new question is whether or not for at least
one of Alice’s indices, Bob’s input is a 1.13 This problem is essentially equivalent — up to
the details of how Alice’s input is encoded — to Disjointness.

This section considers the special case of Disjointness where the sizes of the sets given
to Alice and Bob are restricted. If we follow the line of argument in the proof of Theorem 4.2,
the best-case scenario is a space lower bound of 2Ω(a), where a is the length of Alice’s input;
see also the proofs of Corollary 4.7 and Theorem 4.8 at the end of the lecture. This is
why the Index problem (where Alice’s set is a singleton and a = log2 n) cannot lead —
at least via Lemma 4.1 — to super-linear data structure lower bounds. The minimum a
necessary for the desired space lower bound of nΩ(ε−2) is ε−2 log2 n. This motivates considering
instances of Disjointness in which Alice receives a set of size ε−2. Formally, we define (k, `)-
Disjointness as the communication problem in which Alice’s input is a set of size k (from
a universe U) and Bob’s input is a set of size ` (also from U), and the goal is to determine
whether or not the sets are disjoint (a 1-input) or not (a 0-input).

We next extend the proof of Theorem 4.2 to show the following.

Theorem 4.4 ([1, 9]) For every ε, δ > 0 and every sufficiently large n ≥ N(ε, δ), in every
communication protocol that solves (1

ε2
, n)-Disjointness with a universe of size 2n, either:

12Here δ ∈ (0, 1) is a constant and n ≥ N(δ) is sufficiently large. Using the version of Theorem 4.2 with
“n1−2δ” replaced by “n1−cδ” for an arbitrary constant c > 1, we can take δ arbitrarily close to 1.

13This is reminiscent of a “direct sum,” where Alice and Bob are given multiple instances of a commu-
nication problem and have to solve all of them. Direct sums are a fundamental part of communication
complexity, but we won’t have time to discuss them.

14

(i) Alice sends at least δ
ε2

log2 n bits; or

(ii) Bob sends at least n1−2δ bits.

As with Theorem 4.2, we’ll prove Theorem 4.4 for the special case of deterministic protocols.
The theorem also holds for randomized protocols with two-sided error [1], and we’ll use this
stronger result in Theorem 4.8 below. (Our upper bound in Section 3.2 is randomized, so we
really want a randomized lower bound.) The proof for randomized protocols argues along
the lines of the Ω(

√
n) lower bound for the standard version of Disjointness, and is not as

hard as the stronger Ω(n) lower bound (recall the discussion in Lecture #4).

Proof of Theorem 4.4: LetM denote the 0-1 matrix corresponding to the (1
ε2
, n)-Disjointness

function. Ranging over all subsets of U of size n, and for a given such set S, over all subsets
of U \ S of size 1

ε2
, we see that M has at least

(
2n
n

)
columns that each have at least

(
n
ε−2

)
1-inputs.

Assume for contraction that there is a communication protocol for (1
ε2
, n)-Disjointness

such that neither (i) nor (ii) holds. By the Richness Lemma (Lemma 4.3), there exists a
1-rectangle A×B where

|A| =
(
n

ε−2

)
· 2−δ

logn
ε2 ≥ (ε2n)

1
ε2 · n−

δ
ε2 = ε

2
ε2 n

1
ε2

(1−δ) (2)

and

|B| =
(

2n

n

)
︸ ︷︷ ︸
≈22n/

√
2n

·2−δ
logn
ε2 · 2−n1−2δ ≥ 22n−n1−3δ/2

, (3)

where in (3) we are using that n is sufficiently large.
Since A × B is a rectangle, S and T are disjoint for every choice of S ∈ A and T ∈ B.

This implies that ∪S∈AS and ∪T∈BT are disjoint sets. Letting

s = |∪S∈AS| ,

we have

|A| ≤
(
s

ε−2

)
≤ s1/ε2 . (4)

Combining (2) and (4) implies that
s ≥ ε2n1−δ.

Since every subset T ∈ B avoids the s elements in ∪S∈AS,

|B| ≤ 22n−s ≤ 22n−ε2n1−δ
. (5)

Inequalities (3) and (5) furnish the desired contradiction. �

The upshot is that, for the goal of proving a communication lower bound of Ω(ε−2 log n)
(for Alice, in a Query-Database problem) and a consequent data structure space lower
bound of nΩ(ε−2), (1

ε2
, n)-Disjointness is a promising candidate to reduce from.

15

4.3 A Lower Bound for the (1+ ε)-Approximate Nearest Neighbor
Problem

The final major step is to show that (1
ε2
, n)-Disjointness, which is hard by Theorem 4.4,

reduces to the Query-Database problem for the decision version of the (1 + ε)-nearest
neighbor problem.

4.3.1 A Simpler Lower Bound of nΩ(ε−1)

We begin with a simpler reduction that leads to a suboptimal but still interesting space
lower bound of nΩ(ε−1). In this reduction, we’ll reduce from (1

ε
, n)-Disjointness rather

than (1
ε2
, n)-Disjointness. Alice is given a 1

ε
-set S (from a universe U of size 2n), which

we need to map to a nearest-neighbor query. Bob is given an n-set T ⊆ U , which we need
to map to a point set.

Our first idea is to map the input to (1
ε
, n)-Disjointness to a nearest-neighbor query

in the 2n-dimensional hypercube {0, 1}2n. Alice performs the obvious mapping of her input,
from the set S to a query point q that is the characteristic vector of S (which lies in {0, 1}2n).
Bob maps his input T to the point set P = {ei : i ∈ T}, where ei denotes the characteristic
vector of the singleton {i} (i.e., the ith standard basis vector).

If the sets S and T are disjoint, then the corresponding query q has Hamming distance
1
ε

+ 1 from every point in the corresponding point set P . If S and T are not disjoint, then
there exists a point ei ∈ P such that the Hamming distance between q and ei is 1

ε
− 1.

Thus, the (1
ε
, n)-Disjointness problem reduces to the (1+ε)-approximate nearest neighbor

problem in the 2n-dimensional Hamming cube, where 2n is also the size of the universe from
which the point set is drawn.

We’re not done, because extremely high-dimensional nearest neighbor problems are not
very interesting. The convention in nearest neighbor problems is to assume that the word
size w — recall Section 4.1 — is at least the dimension. When d is at least the size of the
universe from which points are drawn, an entire point set can be described using a single
word! This means that our reduction so far cannot possibly yield an interesting lower bound
in the cell probe model. We fix this issue by applying dimension reduction — just as in our
upper bound in Section 3.2 — to the instances produced by the above reduction.

Precisely, we can use the following embedding lemma.

Lemma 4.5 (Embedding Lemma #1) There exists a randomized function f from {0, 1}2n

to {0, 1}d with d = Θ(1
ε2

log n) and a constant α > 0 such that, for every set P ⊆ {0, 1}2n

of n points and query q ∈ {0, 1}2n produced by the reduction above, with probability at least
1− 1

n
:

(1) if the nearest-neighbor distance between q and P is 1
ε
− 1, then the nearest-neighbor

distance between f(q) and f(P) is at most α;

(2) if the nearest-neighbor distance between q and P is 1
ε

+ 1, then the nearest-neighbor
distance between f(q) and f(P) is at least α(1 + h(ε)), where h(ε) > 0 is a constant
depending on ε only.

16

Lemma 4.5 is an almost immediate consequence of Corollary 3.1 — the map f just takes
d = Θ(ε−2 log n) random inner products with 2n-bit vectors, where the probability of a “1”
is roughly ε/2. We used this idea in Section 3.2 for a data structure — here we’re using it
for a lower bound!

Composing our initial reduction with Lemma 4.5 yields the following.

Corollary 4.6 Every randomized asymmetric communication lower bound for (1
ε
, n)-Disjointness

carries over to the Query-Database problem for the (1 + ε)-approximate nearest neighbor
problem in d = Ω(ε−2 log n) dimensions.

Proof: To recap our ideas, the reduction works as follows. Given inputs to (1
ε
, n)-Disjointness,

Alice interprets her input as a query and Bob interprets his input as a point set (both
in {0, 1}2n) as described at the beginning of the section. They use shared randomness
to choose the function f of Lemma 4.5 and use it to map their inputs to {0, 1}d with
d = Θ(ε−2 log n). They run the assumed protocol for the Query-Database problem for
the (1 + ε)-approximate nearest neighbor problem in d dimensions. Provided the hidden
constant in the definition of d is sufficiently large, correctness (with high probability) is
guaranteed by Lemma 4.5. (Think of Lemma 4.5 as being invoked with a parameter ε′ satis-
fying h(ε′) = ε.) The amount of communication used by the (1

ε
, n)-Disjointness protocol

is identical to that of the Query-Database protocol.14 �

Following the arguments of Section 4.2.1 translates our asymmetric communication com-
plexity lower bound (via Lemma 4.1) to a data structure space lower bound.

Corollary 4.7 Every data structure for the decision version of the (1+ε)-approximate near-
est neighbors problem with query time t = Θ(1) and word size w = O(n1−δ) for constant δ > 0
uses space s = nΩ(ε−1).

Proof: Since tw = O(n1−δ), in the induced communication protocol for the Query-Database
problem (and hence (1

ε
, n)-Disjointness, via Corollary 4.6), Bob sends a sublinear number

of bits. Theorem 4.4 then implies that Alice sends at least Ω(ε−1 log n) bits, and so (by
Lemma 4.1) we have t log2 s = Ω(ε−1 log n). Since t = O(1), this implies that s = nΩ(ε−1). �

4.3.2 The nΩ(ε−2) Lower Bound

The culmination of this lecture is the following.

Theorem 4.8 Every data structure for the decision version of the (1+ε)-approximate near-
est neighbors problem with query time t = Θ(1) and word size w = O(n1−δ) for constant δ > 0
uses space s = nΩ(ε−2).

14The (1
ε , n)-Disjointness protocol is randomized with two-sided error even if the Query-Database

protocol is deterministic. This highlights our need for Theorem 4.4 in its full generality.

17

The proof is a refinement of the embedding arguments we used to prove Corollary 4.7.
In that proof, the reduction structure was

S, T ⊆ U 7→ {0, 1}2n 7→ {0, 1}d,

with inputs S, T of (1
ε
, n)-Disjointness mapped to the 2n-dimensional Hamming cube and

then to the d-dimensional Hamming cube, with d = Θ(ε−2 log n).
The new plan is

S, T ⊆ U 7→ (R2n, `2) 7→ (RD, `1) 7→ {0, 1}D′ 7→ {0, 1}d,

where d = Θ(ε−2 log n) as before, and D,D′ can be very large. Thus we map inputs S, T
of (1

ε2
, n)-Disjointness to 2n-dimensional Euclidean space (with the `2 norm), which we

then map (preserving distances) to high-dimensional space with the `1 norm, then to the
high-dimensional Hamming cube, and finally to the Θ(ε−2 log n)-dimensional Hamming cube
as before (via Lemma 4.5). The key insight is that switching the initial embedding from the
high-dimensional hypercube to high-dimensional Euclidean space achieves a nearest neighbor
gap of 1± ε even when Alice begins with a 1

ε2
-set; the rest of the argument uses standard (if

non-trivial) techniques to eventually get back to a hypercube of reasonable dimension.
To add detail to the important first step, consider inputs S, T to (1

ε2
, n)-Disjointness.

Alice maps her set S to a query vector q that is ε times the characteristic vector of S, which
we interpret as a point in 2n-dimensional Euclidean space. Bob maps his input T to the
point set P = {ei : i ∈ T}, again in 2n-dimensional Euclidean space, where ei denotes the
ith standard basis vector.

First, suppose that S and T are disjoint. Then, the `2 distance between Alice’s query q
and each point ei ∈ P is √

1 + 1
ε2
· ε2 =

√
2.

If S and T are not disjoint, then there exists a point ei ∈ P such that the `2 distance between
q and ei is: √

(1− ε)2 +
(

1
ε2
− 1
)
ε2 =

√
2− 2ε ≤

√
2
(
1− ε

2

)
.

Thus, as promised, switching to the `2 norm — and tweaking Alice’s query – allows us to
get a 1 ± Θ(ε) gap in nearest-neighbor distance between the “yes” and “no” instances of
(1
ε2
, n)-Disjointness. This immediately yields (via Theorem 4.4, following the proof of

Corollary 4.7) lower bounds for the (1 + ε)-approximate nearest neighbor problem in high-
dimensional Euclidean space in the cell-probe model. We can extend these lower bounds to
the hypercube through the following embedding lemma.

Lemma 4.9 (Embedding Lemma #2) For every δ > 0 there exists a randomized func-
tion f from R2n to {0, 1}D (with possibly large D = D(δ)) such that, for every set P ⊆
{0, 1}2n of n points and query q ∈ {0, 1}2n produced by the reduction above, with probability
at least 1− 1

n
,

`H(f(p), f(q)) ∈ (1± δ) · `2(p,q)

for every p ∈ P .

18

Thus Lemma 4.9 says that one can re-represent a query q and a set P of n points in
R2n in a high-dimensional hypercube so that the nearest-neighbor distance — `2 distance
in the domain, Hamming distance in the range — is approximately preserved, with the
approximation factor tending to 1 as the number D of dimensions tends to infinity. The
Exercises outline the proof, which combines two standard facts from the theory of metric
embeddings:

1. “L2 embeds isometrically into L1.” For every δ > 0 and dimension D there exists a
randomized function f from RD to RD′ , where D′ can depend on D and δ, such that,
for every set P ⊆ RD of n points, with probability at least 1− 1

n
,

‖f(p)− f(p′)‖1 ∈ (1± δ) · ‖p− p′‖2

for all p,p′ ∈ P .

2. “L1 embeds isometrically into the (scaled) Hamming cube.” For every δ > 0, there
exists constants M = M(δ) and D′′ = D′′(D′, δ) and a function g : RD′ → {0, 1}D′′

such that, for every set P ⊆ RD′ ,

dH(g(p,p′)) = M · ‖p− p′‖1 ± δ

for every p,p′ ∈ P .

With Lemma 4.9 in hand, we can prove Theorem 4.8 by following the argument in
Corollary 4.7.

Proof of Theorem 4.8: By Lemmas 4.5 and 4.9, Alice and Bob can use a communication
protocol that solves the Query-Database problem for the decision version of (1+ε)-nearest
neighbors to solve the (1

ε2
, n)-Disjointness problem, with no additional communication

(only shared randomness, to pick the random functions in Lemmas 4.5 and 4.9).15 Thus, the
(randomized) asymmetric communication lower bound for the latter problem applies also to
the former problem.

Since tw = O(n1−δ), in the induced communication protocol for the Query-Database
problem (and hence (1

ε2
, n)-Disjointness), Bob sends a sublinear number of bits. Theo-

rem 4.4 then implies that Alice sends at least Ω(ε−2 log2 n) bits, and so (by Lemma 4.1) we
have t log2 s = Ω(ε−2 log2 n). Since t = O(1), this implies that s = nΩ(ε−2). �

References

[1] A. Andoni, P. Indyk, and M. Pătraşcu. On the optimality of the dimensionality re-
duction method. In Proceedings of the 47th Symposium on Foundations of Computer
Science (FOCS), pages 449–458, 2006.

15Strictly speaking, we’re using a generalization of Lemma 4.5 (with the same proof) where the query and
point set can lie in a hypercube of arbitrarily large dimension, not just 2n.

19

[2] A. Chakrabarti and O. Regev. An optimal lower bound on the communication com-
plexity of gap-hamming-distance. SIAM Journal on Computing, 41(5):1299–1317, 2012.

[3] A. Fiat and M. Naor. Implicit O(1) probe search. SIAM Journal on Computing, 22(1):1–
10, 1993.

[4] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with 0(1) worst
case access time. Journal of the ACM, 31(3):538–544, 1984.

[5] A. Gabizon and A. Hassidim. Derandomizing algorithms on product distributions and
other applications of order-based extraction. In Proceedings of Innovations in Computer
Science (ICS), pages 397–405, 2010.

[6] A. Gabizon and R. Shaltiel. Increasing the output length of zero-error dispersers. Ran-
dom Structures & Algorithms, 40(1):74–104, 2012.

[7] P. Indyk. Nearest-neighbor searching in high dimensions. In J. E. Goodman and
J. O’Rourke, editors, Handbook of Discrete and Computational Geometry, chapter 39,
pages 877–892. CRC Press, 2004. Second Edition.

[8] P. B. Miltersen. Cell probe complexity — a survey. Invited paper at Workshop on
Advances in Data Structures, 1999.

[9] P. B. Miltersen, N. Nisan, S. Safra, and A. Wigderson. On data structures and asymmet-
ric communication complexity. Journal of Computer and System Sciences, 57(1):37–49,
1998.

[10] M. Pătraşcu. Lower Bound Techniques for Data Structures. PhD thesis, MAS-
SACHUSETTS INSTITUTE OF TECHNOLOGY, 2008.

[11] A. A. Sherstov. The communication complexity of gap hamming distance. Theory of
Computing, 8(8):197–208, 2012.

[12] T. Vidick. A concentration inequality for the overlap of a vector on a large set, with
application to the communication complexity of the gap-hamming-distance problem.
Electronic Colloquium on Computational Complexity (ECCC), 18:51, 2011.

[13] A. C.-C. Yao. Some complexity questions related to distributive computing (preliminary
report). In Proceedings of the 11th Annual ACM Symposium on Theory of Computing
(STOC), pages 209–213, 1979.

[14] A. C.-C. Yao. Should tables be sorted? Journal of the ACM, 28(3):615–628, 1981.

20

