CS261: Exercise Set #9

For the week of February 29–March 4, 2016

Instructions:

- (1) Do not turn anything in.
- (2) The course staff is happy to discuss the solutions of these exercises with you in office hours or on Piazza.
- (3) While these exercises are certainly not trivial, you should be able to complete them on your own (perhaps after consulting with the course staff or a friend for hints).

Exercise 41

Recall the Vertex Cover problem from Lecture #17: the input is an undirected graph G = (V, E) and a non-negative cost c_v for each vertex $v \in V$. The goal is to compute a minimum-cost subset $S \subseteq V$ that includes at least one endpoint of each edge.

The natural greedy algorithm is:

• $S = \emptyset$

- while S is not a vertex cover:
 - add to S the vertex v minimizing $(c_v/\# \text{ newly covered edges})$
- $\bullet \ {\rm return} \ S$

Prove that this algorithm is not a constant-factor approximation algorithm for the vertex cover problem.

Exercise 42

Recall from Lecture #17 our linear programming relaxation of the Vertex Cover problem (with nonnegative edge costs):

$$\min\sum_{v\in V} c_v x_v$$

subject to

 $x_v + x_w \ge 1$ for all edges $e = (v, w) \in E$

and

$$x_v \ge 0$$
 for all vertices $v \in V$.

Prove that there is always a *half-integral* optimal solution \mathbf{x}^* of this linear program, meaning that $x_v^* \in \{0, \frac{1}{2}, 1\}$ for every $v \in V$.

[Hint: start from an arbitrary feasible solution and show how to make it "closer to half-integral" while only improving the objective function value.]

Exercise 43

Recall the primal-dual algorithm for the vertex cover problem — in Lecture #17, we showed that this is a 2-approximation algorithm. Show that, for every constant c < 2, there is an instance of the vertex cover problem such that this algorithm returns a vertex cover with cost more than c times that of an optimal vertex cover.

Exercise 44

Prove Markov's inequality: if X is a non-negative random variable with finite expectation and c > 1, then

$$\mathbf{Pr}[X \ge c \cdot \mathbf{E}[X]] \le \frac{1}{c}.$$

Exercise 45

Let X be a random variable with finite expectation and variance; recall that $\operatorname{Var}[X] = \mathbf{E}[(X - \mathbf{E}[X])^2]$ and $\operatorname{StdDev}[X] = \sqrt{\operatorname{Var}[X]}$. Prove Chebyshev's inequality: for every t > 1,

$$\mathbf{Pr}[|X - \mathbf{E}[X]| \ge t \cdot \operatorname{StdDev}[X]] \le \frac{1}{t^2}.$$

[Hint: apply Markov's inequality to the (non-negative!) random variable $(X - \mathbf{E}[X])^2$.]