
CS261: A Second Course in Algorithms
Lecture #10: The Minimax Theorem and Algorithms

for Linear Programming∗

Tim Roughgarden†

February 4, 2016

1 Zero-Sum Games and the Minimax Theorem

1.1 Rock-Paper Scissors

Recall rock-paper-scissors (or roshambo). Two players simultaneously choose one of rock,
paper, or scissors, with rock beating scissors, scissors beating paper, and paper beating rock.1

Here’s an idea: what if I made you go first? That’s obviously unfair — whatever you do,
I can respond with the winning move.

But what if I only forced you to commit to a probability distribution over rock, paper,
and scissors? (Then I respond, then nature flips coins on your behalf.) If you prefer, imagine
that you submit your code for a (randomized) algorithm for choosing an action, then I have
to choose my action, and then we run your algorithm and see what happens.

In the second case, going first no longer seems to doom you. You can protect yourself by
randomizing uniformly among the three options — then, no matter what I do, I’m equally
likely to win, lose, or tie. The minimax theorem states that, in general games of “pure
competition,” a player moving first can always protect herself by randomizing appropriately.

∗ c©2016, Tim Roughgarden.
†Department of Computer Science, Stanford University, 474 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.
1Here are some fun facts about rock-paper-scissors. There’s a World Series of RPS every year, with a top

prize of at least $50K. If you watch some videos of them, you will see pure psychological welfare. Maybe this
explains why some of the same players seem to end up in the later rounds of the tournament every year.

There’s also a robot hand, built at the University of Tokyo, that plays rock-paper-scissors with a winning
probability of 100% (check out the video). No surprise, a very high-speed camera is involved.

1

1.2 Zero-Sum Games

A zero-sum game is specified by a real-valued matrix m× n matrix A. One player, the row
player, picks a row. The other (column) player picks a column. Rows and columns are also
called strategies. By definition, the entry aij of the matrix A is the row player’s payoff when
she chooses row i and the column player chooses column j. The column player’s payoff in
this case is defined as −aij; hence the term “zero-sum.” In effect, aij is the amount that
the column player pays to the row player in the outcome (i, j). (Don’t forget, aij might be
negative, corresponding to a payment in the opposite direction.) Thus, the row and column
players prefer bigger and smaller numbers, respectively.

The following matrix describes the payoffs in the Rock-Paper-Scissors game in our current
language.

Rock Paper Scissors
Rock 0 -1 1
Paper 1 0 -1

Scissors -1 1 0

1.3 The Minimax Theorem

We can write the expected payoff of the row player when payoffs are given by an m × n
matrix A, the row strategy is x (a distribution over rows), and the column strategy is y (a
distribution over columns), as

m∑
i=1

n∑
j=1

Pr[outcome (i, j)] aij =
m∑
i=1

n∑
j=1

Pr[row i chosen]︸ ︷︷ ︸
=xi

·Pr[column j chosen]︸ ︷︷ ︸
=yj

aij

= x>Ay.

The first term is just the definition of expectation, and the first equality holds because the
row and column players randomize independently. That is, x>Ay is just the expected payoff
to the row player (and negative payoff to the second player) when the row and column
strategies are x and y.

In a two-player zero-sum game, would you prefer to commit to a mixed strategy before or
after the other player commits to hers? Intuitively, there is only a first-mover disadvantage,
since the second player can adapt to the first player’s strategy. The minimax theorem is the
amazing statement that it doesn’t matter.

Theorem 1.1 (Minimax Theorem) For every two-player zero-sum game A,

max
x

(
min
y

x>Ay

)
= min

y

(
max

x
x>Ay

)
. (1)

On the left-hand side of (1), the row player moves first and the column player second. The
column player plays optimally given the strategy chosen by the row player, and the row

2

player plays optimally anticipating the column player’s response. On the right-hand side
of (1), the roles of the two players are reversed. The minimax theorem asserts that, under
optimal play, the expected payoff of each player is the same in the two scenarios.

For example, in Rock-Paper-Scissors, both sides of (1) are 0 (with the first player playing
uniformly and the second player responding arbitrarily). When a zero-sum game is asym-
metric and skewed toward one of the players, both sides of (1) will be non-zero (but still
equal). The common number on both sides of (1) is called the value of the game.

1.4 From LP Duality to Minimax

Theorem 1.1 was originally proved by John von Neumann in the 1920s, using fixed-point-
style arguments. Much later, in the 1940s, von Neumann proved it again using arguments
equivalent to strong LP duality (as we’ll do here). This second proof is the reason that,
when a very nervous George Dantzig (more on him later) explained his new ideas about
linear programming and the simplex method to von Neumann, the latter was able, off the
top of his head, to immediately give an hour-plus response that outlined the theory of LP
duality.

We now proceed to derive Theorem 1.1 from LP duality. The first step is to formalize
the problem of computing the best strategy for the player forced to go first.

Looking at the left-hand side (say) of (1), it doesn’t seem like linear programming should
apply. The first issue is the nested min/max, which is not allowed in a linear program. The
second issue is the quadratic (nonlinear) character of x>Ay in the decision variables x,y.
But we can work these issues out.

A simple but important observation is: the second player never needs to randomize. For
example, suppose the row player goes first and chooses a distribution x. The column player
can then simply compute the expected payoff of each column (the expectation with respect
to x) and choose the best column (deterministically). If multiple columns are tied for the
best, the it is also optimal to randomized arbitrarily among these; but there is no need for
the player moving second to do so.

In math, we have argued that

max
x

(
min
y

xTAy

)
= max

x

(
n

min
j=1

xTAej

)
= max

x

(
n

min
j=1

m∑
i=1

aijxi

)
, (2)

where ej is the jth standard basis vector, corresponding to the column player deterministi-
cally choosing column j.

We’ve solved one of our problems by getting rid of y. But there is still the nested
max/min. Here we recall a trick from Lecture #7, that a minimum or maximum can often
be simulated by additional variables and constraints. The same trick works here, in exactly
the same way.

3

Specifically, we introduce a decision variable v, intended to be equal to (2), and

max v

subject to

v −
m∑
i=1

aijxi ≤ 0 for all j = 1, . . . , n (3)

m∑
i=1

xi = 1

x1, . . . , xm ≥ 0 and v ∈ R.

Note that this is a linear program. Rewriting the constraints (3) in the form

v ≤
m∑
i=1

aijxi for all j = 1, . . . , n

makes it clear that they force v to be at most minn
j=1

∑m
i=1 aijxi.

We claim that if (v∗,x∗) is an optimal solution, then v∗ = minn
j=1

∑m
i=1 aijxi. This follows

from the same arguments used in Lecture #7. As already noted, by feasibility, v∗ cannot
be larger than minn

j=1

∑m
i=1 aijx

∗
i . If it were strictly less, then we can increase v∗ slightly

without destroying feasibility, yielding a better feasible solution (contradicting optimality).
Since the linear program explicitly maximizes v over all distributions x, its optimal

objective function value is

v∗ = max
x

(
n

min
j=1

x>Aej

)
= max

x

(
min
y

x>Ay

)
. (4)

Thus we can compute with a linear program the optimal strategy for the row player, when it
moves first, and the expected payoff obtained (assuming optimal play by the column player).

Repeating the exercise for the column player gives the linear program

minw

subject to

w −
n∑

j=1

aijyj ≥ 0 for all i = 1, . . . ,m

n∑
j=1

yj = 1

y1, . . . , yn ≥ 0 and w ∈ R.

4

At an optimal solution (w∗,y∗), y∗ is the optimal strategy for the column player (when going
first, assuming optimal play by the row player) and

w∗ = min
y

(
m

max
i=1

e>i Ay
)

= min
y

(
max

x
x>Ay

)
. (5)

Here’s the punch line: these two linear programs are duals. This can be seen by looking
up our recipe for taking duals (Lecture #8) and verifying that these two linear programs
conform to the recipe (see Exercise Set #5). For example, the one unrestricted variable (v
or w) corresponds to the one equality constraint in the other linear program (

∑n
j=1 yj = 1

or
∑m

i=1 xi = 1, respectively).
Strong duality implies that v∗ = w∗; in light of (4) and (5), the minimax theorem follows

directly.2

2 Survey of Linear Programming Algorithms

We’ve established that linear programs capture lots of different problems that we’d like to
solve. So how do we efficiently solve a linear program?

2.1 The High-Order Bit

If you only remember one thing about linear programming, make it this:

Linear programs can be solved efficiently, in both theory and practice.

By “in theory,” we mean that linear programs can be solved in polynomial time in the worst-
case. By “in practice,” we mean that commercial solvers routinely solve linear programs
with input size in the millions. (Warning: the algorithms used in these two cases are not
necessarily the same.)

2.2 The Simplex Method

2.2.1 Backstory

In 1947 George Dantzig developed both the general formalism of linear programming and
also the first general algorithm for solving linear programs, the simplex method.3 Amazingly,
the simplex method remains the dominant paradigm today for solving linear programs.

2The minimax theorem is obviously interesting its own right, and it also has applications in algorithms,
specifically to proving lower bounds on what randomized algorithms can do.

3Dantzig spent the final 40 years of his career at Stanford (1966-2005). You’ve probably heard the story
about a student who is late to class, sees two problems written on the blackboard, assumes they’re homework
problems, and then goes home and solves them, not realizing that they are the major open questions in the
field. (A partial inspiration for Good Will Hunting, among other things.) Turns out this story is not
apocryphal: it was Dantzig, as a PhD student in the late 1930s, in a statistics course at UC Berkeley.

5

2.2.2 Geometry

Figure 1: Illustration of a feasible set and an optimal solution x∗. We know that there always
exists an optimal solution at a vertex of the feasible set, in the direction of the objective
function.

In Lecture #7 we developed geometric intuition about what it means to solve a linear
program, and one of our findings was that there is always an optimal solution at a vertex
(i.e., “corner”) of the feasible region (e.g., Figure 1).4 This observation implies a finite
(but bad) algorithm for linear programming. (This is not trivial, since there are an infinite
number of feasible solutions.) The reason is that every vertex satisfies at least n constraints
with equality (where n is the number of decision variables). Or contrapositively: for a
feasible solution x that satisfies at most n− 1 constraints with equality, there is a direction
along which moving x continues to satisfy these constraints, and moving x locally in either
direction on this line yields two feasible points whose midpoint is x. But a vertex of a feasible
region cannot be written as a non-trivial convex combination of other feasible points.5 See
also Exercise Set #5. The finite algorithm is then: enumerate all (finitely many) subsets of
n linearly independent constraints, check if the unique point of Rn that satisfies all of them
is a feasible solution to the linear program, and remember the best feasible solution found
in this way.

The simplex algorithm also searches through the vertices of the feasible region, but does
so in a smarter and more principled way. The basic idea is to use local search — if there is
a “neighboring” vertex which is better, move to it, otherwise halt. The idea of neighboring
vertices should be clear from Figure 1 — two endpoints of an “edge” of the feasible region.
In general, we can define two different vertices to be neighboring if and only if they satisfy
n − 1 common constraints with equality. Moving from one vertex to a neighbor then just
involves swapping out one of the old tight constraints for a new tight constraint; each such
swap (also called a pivot) corresponds to a “move” along an edge of the feasible region.6

4There are a few edge cases, including unbounded or empty feasible regions, which can be handled and
which we’ll ignore here.

5Making all of this completely precise is somewhat annoying. But everything your geometric intuition
suggests about these statements is indeed true.

6One important issue is “degeneracy,” meaning a vertex that satisfies strictly more than n constraints

6

In an iteration of the simplex method, the current vertex may have multiple neighboring
vertices with better objective function value. The choice of which of these to move to is
known as a pivot rule.

2.2.3 Correctness

The simplex method is guaranteed to terminate at an optimal solution.7 The intuition for
this fact should be clear from Figure 1 — since the objective function is linear and the
feasible region is convex, if no “local move” from a vertex is improving, then there should
be no direction at all within the feasible region that leads to a better solution. Formally,
the simplex method “knows that it’s done” by, at termination, exhibiting a a feasible dual
solution such that the complementary slackness conditions hold (see Lecture #9). Indeed,
the proof that the simplex method is guaranteed to terminate with an optimal solution
provides another proof of strong LP duality.

In terms of our three-step design paradigm (Lecture #9), we can think of the simplex
method as maintaining primal feasibility and the complementary slackness conditions and
working toward dual feasibility.8

2.2.4 Worst-Case Running Time

As mentioned, the simplex method is very fast in practice, and routinely solves linear pro-
grams with hundreds of thousands or even millions of variables and constraints. However,
it is a bizarre mathematical fact that the worst-case running time of the simplex method
is exponential in the input size. To understand the issue, first note that the number of
vertices of a feasible region can be exponential in the dimension (e.g., the 2n vertices of the
n-dimensional hypercube). Much harder is constructing a linear program where the simplex
method actually visits all of the vertices of the feasible region. Such an example was given
by Klee and Minty in the early 1970s (25 years after simplex was invented). Their example
is a “squashed” version of an n-dimensional hypercube. Such exponential lower bounds are
known for all natural deterministic pivot rules.9

The number of iterations required by the simplex method is also related to one of the most
famous open problems in combinatorial geometry, the Hirsch conjecture. This conjecture
concerns the “diameter of polytopes,” meaning the diameter of the graph derived from the

with equality. (E.g., in the plane, this would be 3 constraints whose boundaries meet at a common point.)
In this case, a constraint swap can result in staying at the same vertex. There are simple ways to avoid
cycling, however, which we won’t discuss here.

7Assuming that the linear program is feasible and has a finite optimum. If not, the simplex method
correctly detects which of these cases the linear program falls in.

8How does the simplex method find the initial primal feasible point? For some linear programs this is
easy (e.g., the all-0 vector is feasible). In general, one can add an additional variable, highly penalized in
the objective function, to make finding an initial feasible point trivial.

9Interestingly, some randomized pivot rules (e.g., among the neighboring vertices that are better, pick one
at random) require, in expectation, at most ≈ 2

√
n iterations to converge on every instance. There are now

nearly matching upper and lower bounds on the required number of iterations for all the natural randomized
rules.

7

skeleton of the polytope (with vertices and edges of the polytope inducing, um, vertices
and edges of the graph). The conjecture asserts that the diameter is always at most linear
(in the number of variables and constraints). The best known upper bound on the worst-
case diameter of polytopes is “quasi-polynomial” (of the form ≈ nlogn), due to Kalai and
Kleitman in the early 1990s. Since the trajectory of the simplex method is a walk along the
edges of the feasible region, the number of iterations required (for a worst-case starting point
and objective function) is at least the polytope diameter. Put differently, sufficiently good
upper bounds on the number of iterations required by the simplex method (for some pivot
rule) would automatically yield progress on the Hirsch conjecture.

2.2.5 Average-Case and Smoothed Running Time

The worst-case running time of the wildly practical simplex method poses a real quandary
for the mathematical analysis of algorithms. Can we “correct” the theory so that it better
reflects reality?

In the 1980s, a number of researchers (Borgwardt, Smale, Adler-Karp, etc.) showed that
the simplex method (with a suitable pivot rule) runs in polynomial time “on average” with
respect to various distributions over linear programs. Note that it is not at all obvious how
to define a “random linear program.” Indeed, many natural attempts lead to linear programs
that are almost always infeasible.

At the start of the 21st century, Spielman and Teng proved that the simplex method has
polynomial “smoothed complexity.” This is like a robust version of an average-cases analysis.
The model is to take a worst-case initial linear program, and then to randomly perturb it a
small amount. The main result here is that, for every initial linear program, in expectation
over the perturbed version of the linear program, the running time of simplex is polynomial
in the input size. The take-away being that bad examples for the simplex method are both
rare and isolated, in a precise sense. See the instructor’s CS264 course (“Beyond Worst-Case
Analysis”) for much more on smoothed analysis.

2.3 The Ellipsoid Method

2.3.1 Worst-Case Running Time

The ellipsoid method was originally proposed (by Shor and others) in the early/mid-1970s
as an algorithm for nonlinear programming. In 1979 Khachiyan proved that, for linear
programs, the algorithm is actually guaranteed to run in polynomial time. This was the
first-ever polynomial-time algorithm for linear programming, a big enough deal at the time
to make the front page of the New York Times (if below the fold).

The ellipsoid method is very slow in practice — usually multiple orders of magnitude
slower than the fastest methods. How can a polynomial-time algorithm be so much worse
than the exponential-time simplex method? There are two issues. First, the degree in
the polynomial bounding the ellipsoid method’s running time is pretty big (like 4 or 5,
depending on the implementation details). Second, the performance of the ellipsoid method

8

on “typical cases” is generally close to its worst-case performance. This is in sharp contrast
to the simplex method, which almost always solves linear programs in time far less than its
worst-case (exponential) running time.

2.3.2 Separation Oracles

Figure 2: The responsibility of a separation oracle.

The ellipsoid method is uniquely useful for proving theorems — for establishing that other
problems are worst-case polynomial-time solvable, and thus are at least efficiently solvable
in principle. The reason is that the ellipsoid method can solve some linear programs with
n variables and an exponential (in n) number of constraints in time polynomial in n. How
is this possible? Doesn’t it take exponential time just to read in all of the constraints?
For other linear programming algorithms, yes. But the ellipsoid method doesn’t need an
explicit description of the linear program — all it needs is a helper subroutine known as a
separation oracle. The responsibility of a separation oracle is to take as input an allegedly
feasible solution x to a linear program, and to either verify feasibility (if x is indeed feasible)
or produce a constraint violated by x (otherwise). See Figure 2. Of course, the separation
oracle should also run in polynomial time.10

How could one possibly check an exponential number of constraints in polynomial time?
You’ve actually already seen some examples of this. For example, recall the dual of the
path-based linear programming formulation of the maximum flow problem (Lecture #8):

min
∑
e∈E

ue`e

10Such separation oracles are also useful in some practical linear programming algorithms: in “cutting
plane methods,” for linear programs with a large number of constraints (where the oracle is used in the
same way as in the ellipsoid method); and in the simplex method for linear programs with a large number of
variables (where the oracle is used to generate variables on the fly, a technique called “column generation”).

9

subject to ∑
e∈P

`e ≥ 1 for all P ∈ P (6)

`e ≥ 0 for all e ∈ E.

Here P denotes the set of s-t flow paths of a maximum flow instance (with edge capacities
ue). Since a graph can have an exponential number of s-t paths, this linear program has a
potentially exponential number of constraints.11 But, it has a polynomial-time separation
oracle. The key observation is: at least one constraint is violated if and only if

min
P∈P

∑
e∈P

`e < 1.

Thus, the separation oracle is just Dijkstra’s algorithm! In detail: given an allegedly feasible
solution {`e}e∈E to the linear program, the separation oracle first checks that each `e is
nonnegative (if `e < 0, it returns the violated constraint `e ≥ 0). If the solution passes this
test, then the separation oracle runs Dijkstra’s algorithm to compute a shortest s-t path,
using the `e’s as (nonnegative) edge lengths. If the shortest path has length at least 1, then
all of the constraints (6) are satisfied and the oracle reports “feasible.” If the shortest path
P ∗ has length less than 1, then it returns the violated constraint

∑
e∈P ∗ `e ≥ 1. Thus, we

can solve the above linear program in polynomial time using the ellipsoid method.12

2.3.3 How the Ellipsoid Method Works

Here is a sketch of how the ellipsoid method works. The first step is to reduce optimization
to feasibility. That is, if the objective is max cTx, one replaces the objective function by
the constraint cTx ≥ M for some target objective function value M . If one can solve this
feasibility problem in polynomial time, then one can solve the original optimization problem
using binary search on the target objective M .

There’s a silly story about how to hunt a lion in the Sahara. The solution goes: encircle
the Sahara with a high fence and then bifurcate it with another fence. Figure out which side
has the lion in it (e.g., looking for tracks), and recurse. Eventually, the lion is trapped in
such a small area that you know exactly where it is.

11For example, consider the graph s = v1, v2, . . . , vn = t, with two parallel edges directed from each vi to
vi+1.

12Of course, we already know how to solve this particular linear program in polynomial time — just
compute a minimum s-t cut (see Lecture #8). But there are harder problems where the only known proof
of polynomial-time solvability goes through the ellipsoid method.

10

Figure 3: The ellipsoid method first initializes a huge sphere (blue circle) that encompasses
the feasible region (yellow pentagon). If the ellipsoid center is not feasible, the separation
oracle produces a violated constraint (dashed line) that splits the ellipsoid into two regions,
one containing the feasible region and one that does not. A new ellipsoid (red oval) is drawn
that contains the feasible half-ellipsoid, and the method continues recursively.

Believe it or not, this story is a pretty good cartoon of how the ellipsoid method works.
The ellipsoid method maintains at all times an ellipsoid which is guaranteed to contain the
entire feasible region (Figure 3). It starts with a huge sphere to ensure the invariant at
initialization. It then invokes the separation oracle on the center of the current ellipsoid.
If the ellipsoid center is feasible, then the problem is solved. If not, the separation oracle
produces a constraint satisfied by all feasible points that is violated by the ellipsoid center.
Geometrically, the feasible region and the ellipsoid center are on opposite sides of the corre-
sponding halfspace boundary (Figure 3). Thus we know we can recurse on the appropriate
half-ellipsoid. Before recursing, however, the ellipsoid method redraws a new ellipsoid that
contains this half-ellipsoid (and hence the feasible region).13 Elementary but tedious calcu-
lations show that the volume of the current ellipsoid is guaranteed to shrink at a certain rate
at each iteration, and this yields a polynomial bound on the number of iterations required.
The algorithm stops when the current ellipsoid is so small that it cannot possibly contain a
feasible point (given the precision of the input data).

Now that we understand how the ellipsoid method works at a high level, we see why it
can solve linear programs with an exponential number of constraints. It never works with an
explicit description of the constraints, and just generates constraints on the fly on a “need
to know” basis. Because it terminates in a polynomial number of iterations, it only ever

13Why the obsession with ellipsoids? Basically, they are the simplest shapes that can decently approximate
all shapes of polytopes (“fat” ones, “skinny” one, etc.). In particular, every ellipsoid has a well defined and
easy-to-compute center.

11

generates a polynomial number of constraints.14

2.4 Interior-Point Methods

While the simplex method works “along the boundary” of the feasible region, and the ellip-
soid method works “outside in,” the third and again quite different paradigm of interior-point
methods works “inside out.” There are many genres of interior-point methods, beginning
with Karmarkar’s algorithm in 1984 (which again made the New York Times, this time
above the fold). Perhaps the most popular are “central path” methods. The idea is, instead
of maximizing the given objective cTx, to maximize

cTx− λ · f(distance between x and boundary)︸ ︷︷ ︸
barrier function

,

where λ ≥ 0 is a parameter and f is a “barrier function” that blows up (to +∞) as its
argument goes to 0 (e.g., log 1

z
). Initially, one sets λ so big that the problem becomes easy

(when f(x) = log 1
z
, the solution is the “analytic center” of the feasible region, and can

be computed using e.g. Newton’s method). Then one gradually decreases the parameter λ,
tracking the corresponding optimal point along the way. (The “central path” is the set of
optimal points as λ varies from ∞ to 0.) When λ = 0, the optimal point is an optimal
solution to the linear program, as desired.

The two things you should know about interior-point methods are: (i) many such algo-
rithms run in time polynomial in the worst case; and (ii) such methods are also competitive
with the simplex method in practice. For example, one of Matlab’s LP solvers uses an
interior-point algorithm.

There are many linear programs where interior-point methods beat the best simplex codes
(especially on larger LPs), but also vice versa. There is no good understanding of when one
is likely to outperform the other. Despite the fact that it’s 70 years old, the simplex method
remains the most commonly used linear programming algorithm in practice.

14As a sanity check, recall that every vertex of a feasible region in Rn is the unique point satisfying some
subset of n constraints with equality. Thus in principle there’s always n constraints the are sufficient to
describe one feasible point (given a separation oracle to verify feasibility). The magic of the ellipsoid method
is that, even though a priori it has no idea which subset of constraints is the right one, it always finds a
feasible point while generating only a polynomial number of constraints.

12

