
CS261: Problem Set #4

Due by 11:59 PM on Tuesday, March 8, 2016

Instructions:

(1) Form a group of 1-3 students. You should turn in only one write-up for your entire group.

(2) Submission instructions: We are using Gradescope for the homework submissions. Go to www.gradescope.com
to either login or create a new account. Use the course code 9B3BEM to register for CS261. Only one
group member needs to submit the assignment. When submitting, please remember to add all group
member names in Gradescope.

(3) Please type your solutions if possible and we encourage you to use the LaTeX template provided on
the course home page.

(4) Write convincingly but not excessively.

(5) Some of these problems are difficult, so your group may not solve them all to completion. In this case,
you can write up what you’ve got (subject to (3), above): partial proofs, lemmas, high-level ideas,
counterexamples, and so on.

(6) Except where otherwise noted, you may refer to the course lecture notes only. You can also review any
relevant materials from your undergraduate algorithms course.

(7) You can discuss the problems verbally at a high level with other groups. And of course, you are
encouraged to contact the course staff (via Piazza or office hours) for additional help.

(8) If you discuss solution approaches with anyone outside of your group, you must list their names on the
front page of your write-up.

(9) Refer to the course Web page for the late day policy.

Problem 19

This problem considers randomized algorithms for the online (integral) bipartite matching problem (as in
Lecture #14).

(a) Consider the following algorithm: when a new vertex w ∈ R arrives, among the unmatched neighbors
of w (if any), choose one uniformly at random to match to w.

Prove that the competitive ratio of this algorithm is strictly smaller than 1− 1
e .

(b) The remaining parts consider the following algorithm: before any vertices of R arrive, independently
pick a number yv uniformly at random from [0, 1] for each vertex v ∈ L. Then, when a new vertex
w ∈ R arrives, match w to its unmatched neighbor with the smallest y-value (or to no one if all its
neighbors are already matched).

For the analysis, when v and w are matched, define qv = g(yv) and qw = 1− g(yv), where g(y) = ey−1

is the same function used in Lecture #14.

Prove that with probability 1, at the end of the algorithm,
∑

v∈L∪R qv equals the size of the computed
matching.

1

(c) Fix an edge (v, w) in the final graph. Condition on the choice of yx for every vertex x ∈ L ∪ R \ {v}
other than v; qv remains random. As a thought experiment, suppose we re-run the online algorithm
from scratch with v deleted (the rest of the input and the y-values stay the same), and let t ∈ L denote
the vertex to which w is matched (if any).

Prove that the conditional expectation of qv (given qx for all x ∈ L ∪ R \ {v}) is at least
∫ yt

0
g(z)dz.

(If t does not exist, interpret yt as 1.)

[Hint: prove that v is matched (in the online algorithm with the original input, not in the thought
experiment) whenever yv < yt. Conditioned on this event, what is the distribution of yv?]

(d) Prove that, conditioned on qx for all x ∈ L ∪R \ {v}, qw ≥ 1− g(yt).

[Hint: prove that w is always matched (in the online algorithm with the original input) to a vertex
with y-value at most yt.]

(e) Prove that the randomized algorithm in (b) is (1− 1
e)-competitive, meaning that for every input, the

expected value of the computed matching (over the algorithm’s coin flips) is at least 1 − 1
e times the

size of a maximum matching.

[Hint: use the expectation of the q-values to define a feasible dual solution.]

Problem 20

A set function f : 2U → R+ is monotone if f(S) ≤ f(T) whenever S ⊆ T ⊆ U . Such a function is submodular
if it has diminishing returns: whenever S ⊆ T ⊆ U and i /∈ T , then

f(T ∪ {i})− f(T) ≤ f(S ∪ {i})− f(S). (1)

We consider the problem of, given a function f and a budget k, computing1

max
S⊆U :|S|=k

f(S). (2)

(a) Prove that set coverage problem (Lecture #15) is a special case of this problem.

(b) Let G = (V,E) be a directed graph and p ∈ [0, 1] a parameter. Recall the cascade model from Lecture
#15:

• Initially the vertices in some set S are “active,” all other vertices are “inactive.” Every edge is
initially “undetermined.”

• While there is an active vertex v and an undetermined edge (v, w):

– with probability p, edge (v, w) is marked “active,” otherwise it is marked “inactive;”

– if (v, w) is active and w is inactive, then mark w as active.

Let f(S) denote the expected number of active vertices at the conclusion of the cascade, given that the
vertices of S are active at the beginning. (The expectation is over the coin flips made for the edges.)
Prove that f is monotone and submodular.

[Hint: prove that the condition (1) is preserved under convex combinations.]

(c) Let f be a monotone submodular function. Define the greedy algorithm in the obvious way — at each
of k iterations, add to S the element that increases f the most. Suppose at some iteration the current
greedy solution is S and it decides to add i to S. Prove that

f(S ∪ {i})− f(S) ≥ 1

k
(OPT − f(S)) ,

where OPT is the optimal value in (2).

[Hint: If you added every element in the optimal solution to S, where would you end up? Then use
submodularity.]

1Don’t worry about how f is represented in the input. We assume that it is possible to compute f(S) from S in a reasonable
amount of time.

2

(d) Prove that for every monotone submodular function f , the greedy algorithm is a (1− 1
e)-approximation

algorithm.

Problem 21

This problem considers the “{1, 2}” special case of the asymmetric traveling salesman problem (ATSP). The
input is a complete directed graph G = (V,E), with all n(n− 1) directed edges present, where each edge e
has a cost ce that is either 1 or 2. Note that the triangle inequality holds in every such graph.

(a) Explain why the {1, 2} special case of ATSP is NP -hard.

(b) Explain why it’s trivial to obtain a polynomial-time 2-approximation algorithm for the {1, 2} special
case of ATSP.

(c) This part considers a useful relaxation of the ATSP problem. A cycle cover of a directed graph
G = (V,E) is a collection C1, . . . , Ck of simple directed cycles, each with at least two edges, such that
every vertex of G belongs to exactly one of the cycles. (A traveling salesman tour is the special case
where k = 1.) Prove that given a directed graph with edge costs, a cycle cover with minimum total
cost can be computed in polynomial time.

[Hint: bipartite matching.]

(d) Using (c) as a subroutine, give a 3
2 -approximation algorithm for the {1, 2} special case of the ATSP

problem.

Problem 22

This problem gives an application of randomized linear programming rounding in approximation algorithms.
In the uniform labeling problem, we are given an undirected graph G = (V,E), costs ce ≥ 0 for all edges
e ∈ E, and a set L of labels that can be assigned to the vertices of V . There is a non-negative cost civ ≥ 0 for
assigning label i ∈ L to vertex v ∈ V , and the edge cost ce is incurred if and only if e’s endpoints are given
distinct labels. The goal of the problem is to assign each vertex a label so as to minimize the total cost.2

(a) Prove that the following is a linear programming relaxation of the problem:

min
1

2

∑
e∈E

ce
∑
i∈L

zie +
∑
v∈V

∑
i∈L

civx
i
v

subject to ∑
i∈L

xiv = 1 for all v ∈ V

zie ≥ xiu − xiv for all e = (u, v) ∈ E and i ∈ L

zie ≥ xiv − xiu for all e = (u, v) ∈ E and i ∈ L

zie ≥ 0 for all e ∈ E and i ∈ L

xiv ≥ 0 for all v ∈ V and i ∈ L.

Specifically, prove that for every feasible solution to the uniform labeling problem, there is a corre-
sponding 0-1 feasible solution to this linear program that has the same objective function value.

2The motivation for the problem comes from image segmentation, generalizing the foreground-background segmentation
problem discussed in Lecture #4.

3

(b) Consider now the following algorithm. First, the algorithm solves the linear programming relaxation
above. The algorithm then proceeds in phases. In each phase, it picks a label i ∈ L uniformly at
random, and independently a number α ∈ [0, 1] uniformly at random. For each vertex v ∈ V that has
not yet been assigned a label, if α ≤ xiv, then we assign v the label i (otherwise it remains unassigned).

To begin the analysis of this randomized rounding algorithm, consider the start of a phase and suppose
that the vertex v ∈ V has not yet been assigned a label. Prove that (i) the probability that v is
assigned the label i in the current phase is exactly xiv/|L|; and (ii) the probability that it is assigned
some label in the current phase is exactly 1/|L|.

(c) Prove that the algorithm assigns the label i ∈ L to the vertex v ∈ V with probability exactly xiv.

(d) We say that an edge e is separated by a phase if both endpoints were not assigned prior to the phase,
and exactly one of the endpoints is assigned a label in this phase. Prove that, conditioned on neither
endpoint being assigned yet, the probability that an edge e is separated by a given phase is at most
1
|L|
∑

i∈L z
i
e.

(e) Prove that, for every edge e, the probability that the algorithm assigns different labels to e’s endpoints
is at most

∑
i∈L z

i
e.

[Hint: it might help to identify a sufficient condition for an edge e = (u, v) to not be separated, and to
relate the probability of this to the quantity

∑
i∈L min{xiu, xiv}.]

(f) Prove that the expected cost of the solution returned by the algorithm is at most twice the cost of an
optimal solution.

Problem 23

This problem explores local search as a technique for designing good approximation algorithms.

(a) In the Max k-Cut problem, the input is an undirected graph G = (V,E) and a nonnegative weight we

for each edge, and the goal is to partition V into at most k sets such that the sum of the weights of
the cut edges — edges with endpoints in different sets of the partition — is as large as possible. The
obvious local search algorithm for the problem is:

1. Initialize (S1, . . . , Sk) to an arbitrary partition of V .

2. While there exists an improving move:

[An improving move is a vertex v ∈ Si and a set Sj such that moving v from Si to Sj strictly
increases the objective function.]

(a) Choose an arbitrary improving move and execute it — move the vertex v from Si to Sj .

Since each iteration increases the objective function value, this algorithm cannot cycle and eventually
terminates, at a “local maximum.”

Prove that this local search algorithm is guaranteed to terminate at a solution with objective function
value at least k−1

k times the maximum possible.

[Hint: prove the statement first for k = 2; your argument should generalize easily. Also, you might
find it easier to prove the stronger statement that the algorithm’s final partition has objective function
value at least k−1

k times the sum of all the edge weights.]

(b) Recall the uniform metric labeling problem from Problem 22. We now give an equally good approxi-
mation algorithm based on local search.

Our local search algorithm uses the following local move. Given a current assignment of labels to
vertices in V , it picks some label i ∈ L and considers the minimum-cost i-expansion of the label i; that
is, it considers the minimum-cost assignment of labels to vertices in V in which each vertex either keeps
its current label or is relabeled with label i (note that all vertices currently with label i do not change
their label). If the cost of the labeling from the i-expansion is cheaper than the current labeling, then

4

we switch to the labeling from the i-expansion. We continue until we find a locally optimal solution;
that is, an assignment of labels to vertices such that every i-expansion can only increase the cost of
the current assignment.

Give a polynomial-time algorithm that computes an improving i-expansion, or correctly decides that
no such improving move exists.

[Hint: recall Lecture #4.]

(c) Prove that the local search algorithm in (b) is guaranteed to terminate at an assignment with cost at
most twice the minimum possible.

[Hint: the optimal solution suggests some local moves. By assumption, these are not improving. What
do these inequalities imply about the overall cost of the local minimum?]

Problem 24

This problem considers a natural clustering problem, where it’s relatively easy to obtain a good approximation
algorithm and a matching hardness of approximation bound.

The input to the metric k-center problem is the same as that in the metric TSP problem — a complete
undirected graph G = (V,E) where each edge e has a nonnegative cost ce, and the edge costs satisfy the
triangle inequality (cuv + cvw ≥ cuw for all u, v, w ∈ V). Also given is a parameter k. Feasible solutions
correspond to choices of k centers, meaning subsets S ⊆ V of size k. The objective function is to minimize
the furthest distance from a point to its nearest center:

min
S⊆V : |S|=k

max
v∈V

min
s∈S

csv. (3)

We’ll also refer to the well-known NP -complete Dominating Set problem, where given an undirected
graph G and a parameter k, the goal is to decide whether or not G has a dominating set of size at most k.3

(a) (No need to hand in.) Let OPT denote the optimal objective function value (3). Observe that OPT
equals the cost ce of some edge, which immediately narrows down its possible values to a set of

(
n
2

)
different possibilities (where n = |V |).

(b) Given an instance G to the metric k-center problem, let GD denote the graph with vertices V and
with an edge (u, v) if and only if the edge cost cuv in G is at most 2D. Prove that if we can efficiently
compute a dominating set of size at most k in GD, then we can efficiently compute a solution to the
k-center instance that has objective function value at most 2D.

(c) Prove that the following greedy algorithm computes a dominating set in GOPT with size at most k:

– S = ∅
– While S is not a dominating set in GOPT :

∗ Let v be a vertex that is not in S and has no neighbor in S — there must be one, by the
definition of a dominating set — and add v so S.

[Hint: the optimal k-center solution partitions the vertex set V into k “clusters,” where the ith group
consists of those vertices for which the ith center is the closest center. Argue that the algorithm above
never picks two different vertices from the same cluster.]

(d) Put (a)–(c) together to obtain a 2-approximation algorithm for the metric k-center problem. (The
running time of your algorithm should be polynomial in both n and k.)

(e) Using a reduction from the Dominating Set problem, prove that for every ε > 0, there is no (2 − ε)-
approximation algorithm for the metric k-center problem, unless P = NP .

[Hint: look to our reduction to TSP (Lecture #16) for inspiration.]

3A dominating set is a subset S ⊆ V of vertices such that every vertex v ∈ V either belongs to S or has a neighbor in S.

5

