CS264: Beyond Worst-Case Analysis
Lecture #7: Exact Recovery in Perturbation-Stable
Minimum Cut Instances®

Tim Roughgarden'
January 31, 2017

1 Exact Recovery

This lecture makes explicit a theme introduced surreptitiously last lecture: exact recovery.
The genre of question in this sequence of lectures is: for an algorithm A of interest, for which
inputs does A solve the problem exactly? For example, last lecture, we proved that the
single-link++ algorithm recovers the optimal solution in every 2-stable k-median instance.

We generally think of the algorithm A above as either: (i) an already-implemented algo-
rithm that is available to us, such as a linear programming solver; or (ii) a relatively simple
algorithm that we have a good understanding of and could code up easily. The reason is
that, in practice, designing or implementing a new algorithm from scratch is often a last
resort. It is usually far preferable if something in the current algorithmic toolbox is good
enough, at least for the problem instances relevant to the application. The exact recovery
results in this sequence of lectures develop theoretical guarantees that correspond well to
this style of thinking.?

This lecture covers another case study on exact recovery, for a graph cut problem. We’ll
retain from last lecture the definition of ~-perturbation-stable instances and the flavor of
the problems studied, as cut problems can be thought of as a type of clustering problem.
What will be different is the algorithm studied — linear programming rather than a more
elementary algorithm.

*(©2014-2017, Tim Roughgarden.

"Department of Computer Science, Stanford University, 474 Gates Building, 353 Serra Mall, Stanford,
CA 94305. Email: tim@cs.stanford.edu.

L Approzimate notions of recovery (under weaker input assumptions) are also very interesting. For sim-
plicity we’ll stick with exact recovery for these lectures.

2This contrasts with a majority (but certainly not all) theoretical computer science research on algo-
rithms, where the primary goal is usually to come up with new algorithms that are in some sense “better”
than the state-of-the-art (often according to some worst-case measure).

Figure 1: The minimum s-¢ cut of a graph.

The broader theme, to be elaborated on in future lectures, is to explain when N P-hard
problems can be solved exactly via mathematical programming (linear, semidefinite, convex,
etc.). For mathematical programs that can be solved in polynomial time, like linear or convex
programs, we do not expect exact recovery in worst-case instances. Thus, even more so than
in the last lecture, we’ll use the stability assumption only in the analysis of an algorithm
(linear programming), and not as a guide for designing new algorithms.

2 The Minimum s-t Cut Problem

We begin with a warm-up, the minimum s-¢ cut problem. Everything in this section has
been known for a half-century, but we’ll phrase it in a way that generalizes surprisingly
effortlessly to N P-hard generalizations of the problem (under stronger assumptions).

Recall the input to the problem is an undirected graph G' = (V, E') with a source vertex
s € V and a sink vertex t € V. Every edge e € E has a positive cost ¢, > 0. The desired
output is an s-t cut — a partition of the vertex set V into A and B with s € Aandt € B —
that minimizes the sum of the costs of the cut edges. (An edge is cut if it has one endpoint
in each of A and B.) See Figure 1.

As you may know, the minimum s-f cut problem can be solved in polynomial time,
for example using a maximum flow algorithm. The point of this section is to show that,
alternatively, one can just solve solve a suitable linear program and the minimum s-t cut
pops out as the optimal solution. For simplicity, we assume throughout this section that
the optimal solution is unique. When we study harder problems later, we’ll upgrade this
uniqueness assumption to a suitable y-perturbation-stable-stability assumption.

Recall that a linear program has a set of real-valued decision variables, and the goal is to
optimize an objective function that is linear in the decision variables, subject to constraints
that are also linear. Geometrically, the constraints are an intersection of halfspaces, the
objective function gives a direction, and the goal is to find the feasible point that is furthest
in the desired direction (Figure 2).

How do we encode the minimum s-t¢ cut problem as a linear program? There are two

Objective
function
~

Linear constraints

Figure 2: Cartoon representation of a linear program.

sets of decision variables. First, a nonnegative variable x. > 0 for each edge e € E, with the
semantics that x. = 1 if e gets cut and x. = 0 otherwise. Second, there is a nonnegative
decision variable d, > 0 for each vertex v € V; the intention is that d, = 0 if v is in the
source-side A of the cut, and d, = 1 if v € B. Given these semantics, two obvious constraints
are ds = 0 and d; = 1. The more interesting constraints are meant to enforce the property
that, whenever the endpoints u, v of an edge e are on different sides of the s-t cut, edge e is
cut. Precisely, these constraints are:

dy — d,
dv _du

Te

(A\VARYS

Te

for every edge e = (u,v) € E. These constraints are equivalent to the single constraint
ze > |d, — d,|; we have written them so that it is obvious that they are linear constraints.
Given the intended semantics for the z-variables, it is clear that the (linear) objective function

is
min E Coe.

eeE

We denote this linear program by (LP1).

It is clear that every s-t cut (A, B) induces a feasible 0-1 solution to (LP1) with matching
objective function value: set d, = 0 forv € A, d, = 1 for v € T, and z. = 1 for the cut
edges and z, = 0 for the rest. In this sense, (LP1) is a relazation of the s-t minimum cut
problem. There are, however, feasible solutions to the linear program that do not correspond
to s-t cuts. This is intuitively obvious from a glance at Figure 2 — the s-t cuts correspond
to a discrete and finite set of points, whereas the feasible region of a linear program is a
convex set. More concretely, in the graph of Figure 1, one fractional solution is to set x, = %
for every edge, with d,-values of vertices increasing by % with each hop away from s and
toward .

An important fact, that you should definitely know, is that linear programs can be solved
efficiently, both in theory and in practice.

Fact 2.1 There is a polynomial-time algorithm for linear programming.

Whether proving theorems or solving real-world problems, most users of linear programming

algorithms treat them as “black boxes” and don’t understand how or why they work. We

will do the same in the course. If you want to see what’s “under the hood,” check out e.g. [6].
In this section, we prove the following.

Proposition 2.2 For every minimum s-t cut problem with a unique optimal solution, the
optimal solution to the linear program (LP1) is the (straightforward encoding of) the mini-
mum S-t cut.

The point of Proposition 2.2 is that, while the feasible region of the linear program includes
plenty of points that don’t correspond to s-t cuts, we don’t need to worry about them —
as long as we solve the linear program to optimality, we’ll get back an integer solution that
corresponds to the minimum cut.3

To prove the proposition, let C* denote the minimum s-t cut, and let F* denote the edges
cut by it. For another s-t cut C, cutting the edges F(C), we let A(C') denote the extent to
which the total cost of C' exceeds that of C*:

AC)= > - > c (1)

eeF(C)\F* e€EF*\F(C)
Since C* is the unique minimum s-t cut,
A(C) =0 (2)

for every s-t cut C', with equality holding if and only if C'= C™.
Similarly, for the optimal solution (%X, d) to (LP1), we denote by A(X) the extent to which
the objective function value of the integer solution corresponding to C* exceeds that of X:

AR) =D cde— Y el —).
e¢F* ecF*

Since C* corresponds to a feasible solution to (LP1), and X corresponds to the optimal

solution,
A(%x) <0. (3)

The key to proving Proposition 2.2 is the following lemma.
Lemma 2.3 There is a randomized algorithm that outputs a (random) s-t cut C' such that,

for every edge e € F,
Prle cut by C] = &, (4)

and hence
Prle not cut by C] =1 — z.. (5)

3This is true even when there is not a unique minimum s-t cut. The reasons, which we won’t prove here,
are: (i) all of the extreme points (a.k.a. vertices) of the feasible region are integral and correspond to s-t
cuts; and (ii) linear programming algorithms always return an extreme point of the feasible region.

4

Before proving the lemma, we explain why it implies Proposition 2.2. The intuition is
that since (i) the optimal fractional solution X can only be better than the optimal integral
solution C*; and (ii) Lemma 2.3 gives a distribution over s-t cuts that is as good, on average,
as C*, and so the distribution must be a point mass on the cut C*, which implies that X is
a 0-1 solution.

Formally, let C' denote the random s-t cut generated by the randomized algorithm in
Lemma 2.3, and consider the expected extent to which its cost exceeds that of C*:

E[A(C)] = Z e - Pr[C cuts ¢] — Z ce - Pr[C doesn’t cut €] (6)
egF* ecF'*
= Z Colo — Z Ce(l — ie) (7)
egF* ecF'*
~ A®
< 0, (8)

where equation (6) follows from linearity of expectation, equation (7) from (4) and (5) in
Lemma 2.3, and (8) follows from (3). Since A(C') is always nonnegative and is strictly positive
unless C' = C* (recall (2)), the derivation (6)—(8) implies that the randomized algorithm of
Lemma 2.3 outputs the cut C* with probability 1. Inspection of (4) and (5) shows that this
occurs only if z, € {0,1} for every e € E. This completes the proof of Proposition 2.2.

Proof of Lemma 2.3: Let (%, d) be the optimal solution to (LP1). Intuitively, the randomized
algorithm blows up a balloon around the source s up to a random size, with everything inside
the balloon comprising the source-side of the cut. Formally:

s-t Cut Rounding Algorithm

1. Pick a “radius” r € (0, 1) uniformly at random.

2. Define A={veV :d,<r} and B=V\A.

Since d; = 0 and d; = 1, the algorithm’s output is an s-t cut with probability 1.

To verify (4) (and hence (5)), first note that the optimality of (%,d) implies that &, =
\d, — d,| for every edge e = (u,v). (Otherwise decreasing #. would yield another feasible
solution, with smaller objective function value.) We thus have

Prle cut by (A, B)] = Pr/|r is between d,, and dv]
Czu - CZvl

= I,

for every edge e = (u,v). B

Figure 3: A multiway cut of a graph (with k£ = 3).

3 Perturbation-Stable Instances of the Minimum Mul-
tiway Cut Problem

Proposition 2.2 shows that in every instance of the minimum s-t¢ cut problem with a unique
optimal solution, the optimal solution can be recovered exactly in polynomial time by solving
a linear programming relaxation. This section takes this result to the next level, by consid-
ering an N P-hard generalization of the minimum s-¢ cut problem, replacing the uniqueness
assumption with a stronger perturbation-stability assumption, and again showing how to
recover the optimal (integral) solution using linear programming.

In the minimum multiway cut problem, the input is an undirected graph G = (V| E) with
positive edge costs c., and a set t1,ts,...,t; € V of terminals. A multiway cut is a partition
of the vertex set V into k groups Si,...,Sk, with t; € S; for ¢+ = 1,2,...,k. In addition
to being a natural generalization of the fundamental s-¢ minimum cut problem (which is
equivalent to the k = 2 case), the problem also shows up in applications, such as image
segmentation.* The problem is N P-hard for every k > 3 [3]. See Figure 3.

Since the problem is N P-hard, we do not expect to recover an optimal solution using
linear programming in worst-case instances. But we can do this under a stability assumption
analogous to the one introduced last lecture for k-median instances.

Definition 3.1 For a parameter 7 > 1, an instance of multiway cut is vy-perturbation-stable

if a common partition (S7,...,S5) is the unique optimal solution of all y-perturbations,
where each original edge cost ¢, is replaced an edge cost ¢, € [,—1yce, Ce).

The main result of this lecture is the following result; we’ll define the linear programming
relaxation (LP2) shortly.

4In the most straightforward formulation, vertices correspond to pixels, edges correspond to neighboring
pixels, edge costs correspond to a prior guess about how likely two neighboring pixels are to be in the same
region (e.g., based on how similar their colors are), and groups of the multiway cut correspond to the different
regions of the image [1].

Theorem 3.2 ([5]) For every 4-perturbation-stable multiway cut instance, the optimal so-
lution to the linear program (LP2) is the (straightforward encoding of) the optimal multiway
cut.

This linear program (LP2) (originally from [2]) is a nice extension of (LP1), which can
be viewed as the k = 2 special case. We again have a set of decision variables x, > 0 for each
e € E, meant to indicate which edges get cut. We now have multiple variables d!, ..., d* >0
per vertex, with the idea that if v is assigned to the ith group, then d’, = 1 and &/ = 0 for
every j # i. The first set of constraints just asserts that each terminal is fully assigned to
its own group:

d, =1
for each © = 1,2,...,k. For other vertices, we insist that they are fully assigned, perhaps
fractionally, to the groups:
k
dod=1
i=1

for every v € V. Next, we give constraints stating that edges with endpoints in different
groups must be cut. First, we have

ve = dy,—d,
ye > d,—d,
for every edge e = (u,v) € F and i = 1,2,...,k, where the y’’s are auxiliary variables.

These constraints assert that the difference in the extent to which the edge’s endpoints are
assigned to group ¢ should contribute to the extent to which e is cut. Finally, for every
e € E/, we have the constraint
k
1 .
1=

which aggregates the group assignment differences across the coordinates. Note that if
the endpoints of an edge e are assigned integrally to different groups (i and j, say), then
yi =yl = 1; this motivates the “1” in (9), so that z. = 1 for such an edge.” Also note
that every multiway cut naturally induces a feasible 0-1 solution to (LP2), with matching
objective function value, according to the intended semantics of the decision variables. As
another example, if k& = 3, and the d-values of u and v are (%, %, 0) and (0, %, %), then the
x-value of edge e = (u,v) must be at least % Pictorially, we can think of (LP2) as assigning
each vertex v a point (dl,...,d") in the k-simplex (Figure 4), with corners of the simplex
corresponding to the groups. Constraint (9) states that edge e = (u,v) is cut in proportion
to the “distance” (specifically, half of the ¢; distance) between the points of the simplex to

which v and v are assigned.

°If we were only concerned with integral solutions, the constraint z, = maxt_; y? would already force
edge e to be cut whenever its endpoints are assigned to different groups. When the variables can be fractional,
however, the constraint (9) rules out many more fractional solutions, thereby increasing the utility of (LP2)
as an approximation to the problem that we actually care about, the minimum multiway cut problem.

7

t3 = (07 07 1)

v=(d,d2,d3)

v v v

t1 = (1,0,0) ty = (0,1,0)

Figure 4: Pictorial representation of (LP2): the simplex when k = 3, drawn in two dimen-
sions.

We now turn to Theorem 3.2. The proof follows the same template as that of Proposi-
tion 2.2. Let C* be the unique multiway cut, cutting the edges F™*. For another multiway
cut C, cutting edges F'(C'), define

A4(C):i Y - Y e (10)

eeF(C)\F* e€F*\F(C)

Recall the interpretation of the quantity A(C) in (1), as the extent to which the (s-t)
cut C' is more costly than the optimal (s-t) cut C*. The interpretation of A4(C) in (10) is
as the extent to which the cost of the multiway cut C' exceeds that of C*, after applying
the J-perturbation most favorable for C. The 4-perturbation that most narrows the cost
gap between the optimal multiway cut C* and some other multiway cut C' is the one that
reduces the cost of the edges cut by C' but not C* as much as possible (i.e., by a factor of 4).
With this understanding of the expression in (10), it should be clear that A4(C*) = 0 and
A4(C) > 0 for every other multiway cut C' # C* (by 4-perturbation-stability).

~

For the optimal solution (X,¥,d) to (LP2), as before we define

AR) =Y cde— Y el — i),

egF* ecF*

as the increase in cost incurred by switching from the (integral) solution corresponding to
C* to the (possibly fractional) optimal LP solution. As before, since C* induces a feasible

solution to (LP2) and X is optimal,
A(x) <0. (11)

We next give the analog of Lemma 2.3. We can’t expect an equally strong lemma for
multiway cuts with k£ > 3, since this would give a polynomial-time exact algorithm for an
N P-hard problem. Instead, we content ourselves with a version in which the identities (4)
and (5) hold approximately.

Lemma 3.3 There is a randomized algorithm that outputs a (random) multiway cut C' such
that, for every edge e € F,

Prle cut by C] < 2z, (12)
and
11—z,

2

Note that (13) does not follow from (12); the implied lower bound of 1 — 2z, is not good
enough for our purposes.

The proof that Lemma 3.3 implies Theorem 3.2 follows the proof of Proposition 2.2.
We lose two factors of 2 in the argument from (12) and (13), but these get absorbed by
the 4-perturbation-stability assumption. Formally, let C' denote the random multiway cut
generated by the randomized algorithm in Lemma 3.3. We have

Prle not cut by C| >

(13)

E[ALC)] = i Z e - Pr[C cuts ¢] — Z ce - Pr[C doesn’t cut €] (14)
egF* ecF™*
1 . L
< D ce(2i) =) ced(l—) (15)
egF* ecF*
= AR
< 0, (16)

where equation (14) follows from linearity of expectation, inequality (15) from (12) and (13)
in Lemma 3.3, and (16) follows from (11). Since A4(C) is always nonnegative and is strictly
positive unless C' = C*, the derivation (14)—(16) implies that the randomized algorithm of
Lemma 3.3 outputs the cut C* with probability 1. We’ll see below that this occurs only
if z. € {0,1} for every e € E. Modulo this point, this completes the proof of Theorem 3.2.

A

Proof of Lemma 3.3: Let (X,¥,d) be the optimal solution to (LP2). The randomized algo-
rithm (originally from [4]) is simple, though unlike the one in the proof of Lemma 2.3, it’s
probably not the first one you’d think of:

Multiway Cut Rounding Algorithm

1. Initially, all vertices are unassigned.
2. While there is at least one unassigned vertex:
(a) Pick a threshold r € (0,1) uniformly at random.

(b) Pick a group i € {1,2,...,k} uniformly at random.

(¢) For every unassigned vertex v, if i > r, assign vertex v to group i.

The algorithm eventually terminates with a multiway cut — each vertex is assigned to exactly
one group, and since di =1 and d{ = 0 for j # i for every 7, every terminal is assigned to

9

the correct group. We leave the verification of inequalities (12) and (13) to Homework #4.°
|

Observe that, if CZ{} is strictly between 0 and 1 for any vertex v and coordinate 7, then
d’ € (0,1) for some other coordinate £ as well (since .5, d’ = 1). In this case, the random-
ized algorithm of Lemma 3.3 will sometimes assign v to group j, and sometimes to group
¢. We conclude that the randomized algorithm always returns the same multiway cut only
if the optimal fractional solution (f(,y,a) is integral. This completes the proof of Theo-
rem 3.2, that in 4-perturbation-stable multiway cut instances, a natural linear programming
relaxation (LP2) is guaranteed to be exact.

An interesting open research question is to prove better upper bounds, or any lower
bounds, on the minimum value of v such that the optimal solution of y-perturbation-stable
multiway cut instances can be recovered in polynomial time (by solving (LP2) or by other

means).

References

[1] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph
cuts. [EEE Transactions on Pattern Analysis and Machine Intelligence, 23(11):1222—
1239, 2011.

[2] G. Calinescu, H. Karloff, and Y. Rabani. An improved approximation algorithm for
multiway cut. Journal of Computer and System Sciences, 60(3):564-574, 2000.

[3] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis.
The complexity of multiterminal cuts. SIAM Journal on Computing, 23(4):864-894,
1994.

[4] J. M. Kleinberg and E.Tardos. Approximation algorithms for classification problems with
pairwise relationships: metric labeling and markov random fields. Journal of the ACM,
49(5):616-639, 2002.

[5] K. Makarychev, Y. Makarychev, and A. Vijayaraghavan. Bilu-Linial stable instances of
max cut and minimum multiway cut. In Proceedings of the 25th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 890-906, 2014.

SHere’s an example to get a feel for the algorithm’s behavior. Suppose the endpoints u, v of edge e have
d-values (%, %, 0) and (%, %, %) If 4 is randomly chosen to be 3, then w is definitely not assigned to any group
in this iteration, and v is assigned in this iteration to group 3 with probability % In the latter case, edge e
will definitely be cut at the end of the day. If 7 is chosen to be 1, then three things could happen: both
and v could be assigned to group 1 (if r < %), in which case e is definitely not cut; neither could be assigned
(if 7 > 1), leaving the edge’s fate to a future iteration; or only u could be assigned to group 1 (if r € (3, 3]),
in which case e is likely to eventually get cut (although there is still a chance v could be assigned to group 1
in a future iteration).

10

[6] J. Matousek and B. Gértner. Understanding and Using Linear Programming. Springer,
2006.

11

