
CS264: Beyond Worst-Case Analysis
Lectures #9 and 10: Spectral Algorithms for Planted

Bisection and Planted Clique∗

Tim Roughgarden†

February 7 and 9, 2017

1 Preamble

Lectures #6–8 studied deterministic conditions (specifically, perturbation stability), for sev-
eral NP -hard clustering and graph partitioning problems, under which the optimal solution
can be recovered exactly in polynomial time. These stability conditions were reasonably
natural, in that there was a plausible narrative about why “real-world” instances might tend
to satisfy them, at least approximately.

Today we continue our ongoing study of the polynomial-time exact recovery of “planted”
or “ground truth” solutions. We’ll study probabilistic models (i.e., input distributions) that
share some spirit with the stability conditions of Lectures #6–8, in that the optimal solution
tends to “stick out.” The goals are to design and analyze polynomial-time algorithms that
recover the optimal solution with high probability (over the input distribution), and to
understand how far the optimal solution to an NP -hard problem has to stick out before
exact recovery is possible (w.h.p.) in polynomial time.

2 The Planted Bisection Problem

Our first case study concerns the Minimum Bisection problem, which is yet another cut
problem. This problem is the same as the minimum cut problem, except that the two sides of
the graph are additionally constrained to have equal size. That is, the input is an undirected
graph G = (V,E) with an even number of vertices, and the goal is to identify the cut (S, T )
with |S| = |T | that has the fewest number of crossing edges. This problem is NP -hard,
in contrast to the Minimum Cut problem without the constraint of balanced sides. But

∗ c©2014–2017, Tim Roughgarden.
†Department of Computer Science, Stanford University, 474 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

1



perhaps we can solve the problem in polynomial time on “typical” instances? But then what
do we mean by “typical?” We next develop generative models (i.e., distributions over inputs)
that posit answers to this question.

2.1 Erdös-Renyi Random Graphs

We first review Erdös-Renyi random graphs as a starting point, before proceeding to a more
informative model. Recall that a random graph from G(n, p) is a simple undirected graph on
n vertices, where each of the

(
n
2

)
possible edges is present independently with probability p.

The special case of p = 1
2

is the uniform distribution over all n-vertex graphs. It can also be

interesting to study the case of small p (like Θ( logn
n

) or even Θ( 1
n
)), reflecting the fact that

real-world graphs tend to be sparse.
The G(n, p) model has at least two drawbacks that interfere with it usefully informing

the design of graph algorithms. First, as with most pure average-case analysis frameworks,
the data model is too specific; second, the model often fails to meaningfully differentiate
between different algorithms.

Returning to the Minimum Bisection problem, assume for simplicity that the edge
probability p is a constant. Then for every bisection (S, T ) of a set of n vertices, the
expected number of crossing edges in a random graphG ∈ G(n, p) is pn2/4. A straightforward
application of the Chernoff bound (see Homework #5) shows that, with high probability,
the number of edges crossing every bisection is this same quantity, up to a 1 ± o(1) factor.
Thus even an algorithm that computes a maximum bisection is an almost optimal algorithm
for computing a minimum bisection!

2.2 Random Graphs with a Planted Solution

Recall our primary motivation for our stability conditions in Lectures #6–8: we are often
only interested in inputs that have an obviously meaningful solution, which we identify with
being “clearly optimal” in some sense. Planted graph models are a nice probabilistic analog of
such stability conditions, where such a “clearly optimal” solution exists with high probability.

Next we’ll look at a planted version of the minimum bisection problem, originally pro-
posed (in different communities) by Holland et al. [8] and Bui et al. [5].1

The idea is for “nature” to generate an instance of the Minimum Bisection problem
according to the following random process (for a fixed vertex set V , with |V | even, and
parameters p, q ∈ [0, 1]):

1. Choose a partition (S, T ) of V with |S| = |T | uniformly at random.

2. Independently for each pair (i, j) of vertices inside the same cluster (S or T ), include
the edge (i, j) with probability p.

1Strictly speaking, the model in [5] is slightly different from the one considered here: it considers a
random graph with a given number of edges and a given minimum bisection size.

2



3. Independently for each pair (i, j) of vertices in different clusters, include the edge (i, j)
with probability q.

Thus the expected edge density inside the clusters is p, and between the clusters is q.
The difficulty of recovering the planted bisection (S, T ) clearly depends on the gap be-

tween p and q. If p = q, then the problem is impossible (every bisection is equally likely to
be the planted one). If p = 1 and q = 0 then the problem is trivial (the input is one clique
on S and a disjoint clique on T ). So the key question in this model is: how big does the gap
p−q need to be before exact recovery is possible in polynomial time (with high probability)?
We will see an impressive result: even with p − q → 0 as n → ∞ (i.e., an asymptotically
vanishing gap), computationally efficient exact recovery is possible.

2.3 Algorithmic Approaches

How would one tackle recovery problems in generative models with planted solutions? Many
different approaches have been tried. We next list three of the most well-studied genres of
algorithms in this context, listed roughly in order of increasing complexity and power.

1. Combinatorial approaches. We leave the term “combinatorial” safely undefined, but
basically it refers to algorithms that work directly with the graph, rather than resorting
to any continuous methods. (Why on earth would continuous methods be useful?
See below.) For example, an algorithm that looks only at vertex degrees, subgraphs,
shortest paths, etc., would be considered combinatorial. These algorithms are generally
the simplest and will show up primarily on the homeworks.

2. Spectral algorithms. By “spectral,” we mean an algorithm that uses linear algebra.
Generally, this involves computing and using the eigenvectors of a suitable matrix
derived from the input graph. These lectures discuss spectral algorithms in detail.

3. Semidefinite programming (SDP). We saw a brief glimpse of semidefinite program-
ming last lecture, for exact recovery in sufficiently perturbation-stable instances of the
Maximum Cut problem. As we’ll see, they’re also very useful for recovering planted
solutions in the context of generative models, and are strictly more powerful than spec-
tral algorithms in the “semi-random” models that we’ll discuss in Lectures #11 and
#12.

For the Planted Bisection problem in the parameter regime with p, q = Ω(1) and also
p−q = Ω(1), simple combinatorial algorithms already recover the planted solution with high
probability (see Homework #5). This seems great, no? Unfortunately, these algorithms do
not resemble those that perform well in practice, and so this result is not very satisfying. To
make the problem more difficult, we focus on the regime where p−q is going to 0 with n; this
will force us to work harder and develop better algorithms. It will turn out that a spectral

algorithm achieves exact recovery (w.h.p.) provided p − q = Ω

(√
logn
n

)
. This is much

more satisfying, not only because it is a stronger positive result, but also because the result

3



is for a potentially practically useful algorithm. (Spectral techniques are one of the most
popular methods of doing graph partitioning in practice.) Thus switching the problem from
the p−q = Ω(1) regime to the p−q = o(1) regime is valuable not because we literally believe
that the latter is so much more faithful to “typical” instances, but because it encourages
better algorithm design.2,3

2.4 A Canonical Spectral Algorithm

To give you a sense of what we’ll be talking about, we’ll record here the basic algorithm that
we’ll look at. The final algorithm requires a couple of modifications, but this is the gist. The

modified algorithm will recover planted partitions even when p − q is as small as c
√

logn
n

,

for a sufficiently large constant c. This algorithm and result are due to McSherry [14]; our
presentation is inspired by Spielman [17].

Canonical Spectral Algorithm

1. Let M denote the adjacency matrix of the given graph G = (V,E)—the
(symmetric) V × V matrix with Mij = 1 if (i, j) ∈ E and 0 otherwise.

2. Compute the second eigenvector u of M.

3. Set
A = {i ∈ V : ui > 0}

and
B = {i ∈ V : ui ≤ 0}.

What’s an eigenvector, again? Section 3 reviews the relevant linear algebra. What do
eigenvectors have to do with graph partitioning? Section 4 explains the intuition.

3 Linear Algebra Review

This section reviews basic facts about the eigenvalues and eigenvectors of symmetric matrices,
as covered in any standard linear algebra course. Section 4 instantiates these general facts
for adjacency matrices of graphs and explains the meaning of eigenvectors in the context of
the Planted Bisection problem.

2Sometimes, an initially dubious-looking mathematical model winds up leading to the “right” solution,
which in turn provides an ex post facto justification for the model.

3Analogues of our bisection recovery results continue to hold for p, q as small as Θ((log n)/n). For recent
results where p, q are very small (meaning O(1/n)), and only approximate recovery is possible, see [13, 15, 16].

4



3.1 Eigenvectors and Eigenvalues

Happily, as we consider only undirected graphs, we will only need to think about symmetric
matrices, meaning square (n×n) matrices M with Mij = Mji for every i, j ∈ {1, 2, . . . , n}. To
develop our geometric intuition, we will often think about M in terms of the corresponding
operator (i.e., function from Rn to Rn) given by v 7→ Mv. Thinking this way, we can talk
about how M “moves” different vectors v.

An eigenvector of M is a nonzero vector v such that Mv = λv for some λ ∈ R. The
scalar λ is the corresponding eigenvalue. Thus M simply scales the vector v, possibly after
flipping it to the opposite direction (in the case that λ < 0). We can think of an eigenvector
as a “direction of stretch” for M, and the eigenvalue as the magnitude (and orientation) of
the stretch. Note that if v is an eigenvector, then so is αv for every α 6= 0 (with the same
eigenvalue). For this reason, we are free to assume for convenience that eigenvectors have
unit length.4

3.2 Spectral Decomposition

The following “spectral theorem” will be very important for us. See any linear algebra book
for a proof (e.g., by induction on the number of dimensions).

Theorem 3.1 (Spectral Theorem for Symmetric Matrices) If M is an n × n sym-
metric matrix, then there is an orthonormal basis u1, . . . ,un of eigenvectors with real corre-
sponding eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn.

A few reminders: a basis of Rn is a set of n linearly independent vectors (i.e., none is a linear
combination of the others), which necessarily span the whole space. Once a basis is fixed,
every vector v has a unique representation as a linear combination of the basis vectors. A
basis is orthonormal if every basis vector has unit length and each pair v,w of distinct basis
vectors are orthogonal (i.e., have inner product 〈v,w〉 =

∑n
i=1 viwi equal to 0).

Theorem 3.1 implies that every symmetric matrix, viewed as an operator, is geometrically
really, really simple—as simple as a diagonal matrix. To see this, take your favorite vector
v ∈ Rn and write it as a linear combination of M’s eigenvectors:

v =
n∑
i=1

αiui, (1)

with coefficients given by the projections of v onto the ui’s:

αi = 〈ui,v〉 (2)

for i = 1, 2, . . . , n. (To see that (2) follows from (1), take inner products of both sides with
ui and use that the uj’s are orthonormal.) Now apply the matrix M. By linearity, M acts

4Unless otherwise stated, all distances are Euclidean. So the length ‖v‖ of a vector v ∈ Rd is its 2-norm,√∑d
i=1 v

2
i .

5



independently along each eigenvector:

Mv =
n∑
i=1

αiMui =
n∑
i=1

λiαiui.

All of this gives the following spectral decomposition of M:

M =

 u1 u2 · · · un


︸ ︷︷ ︸

Q

·


λ1 0

λ2
. . .

0 λn


︸ ︷︷ ︸

D

·


u1

u2
...

um


︸ ︷︷ ︸

Q>

. (3)

Here Q> re-represents a vector v in terms of the basis of ui’s (since Q>v = (〈u1,v〉, . . . , 〈un,v〉),
i.e., the vector of αi’s from (1)). The diagonal matrix D then scales and possibly flips in-
dependently along the directions of the ui’s. Finally, Q translates the result back into the
standard basis.5 In this sense, every symmetric matrix is really a “diagonal in disguise,”
acting like a diagonal matrix after a suitable “rotation” of Rn.6

3.3 Variational Characterization of Eigenvalues

The eigenvalues and eigenvectors of a symmetric matrix can be computed efficiently, for
example using the singular value decomposition (SVD). In Matlab, it just takes one line (via
the command eig). But suppose we need to get a handle on the eigenvalues or eigenvectors of
a matrix analytically, for the purposes of a proof? We next describe an alternative definition
of eigenvalues that will be extremely useful over the next several lectures. The key point
is that eigenvalues and eignevectors arise as the optimal solutions of natural optimization
problems.

Theorem 3.2 (Variational Characterization) Let M be an n × n symmetric matrix.
Then the first eigenvalue and corresponding eigenvector of M satisfy

λ1 = max
‖u‖=1

u>Mu

and
u1 ∈ argmax

‖u‖=1

u>Mu,

respectively. For i = 2, 3, . . . , n,

λi = max
‖u‖=1

u⊥u1,...,ui−1

u>Mu

5Note that when Q is an orthogonal matrix (i.e., is a square matrix with orthonormal columns), then
QQ> = Q>Q = I. Hence the inverse of an orthogonal matrix Q is just its transpose Q>.

6The identity in (3) makes it clear why the spectral theorem is often described as “symmetric matrices
are diagonalizable by orthogonal matrices.”

6



and
ui = argmax

‖u‖=1
u⊥u1,...,ui−1

u>Mu,

where u⊥v denotes that u,v are orthogonal.7

The proof is not difficult, and we leave it to Homework #5. Intuitively, if we parse u>Mu—
known as the quadratic form defined by M—as u>(Mu), we see that the quadratic form
measures the projection length of a vector u onto its image under the map M. Since
projections are maximized for colinear vectors (all else being equal), it makes sense that
eigenvectors arise as maximizers of a quadratic form.

For example, Theorem 3.2 immediately gives an easy way to lower bound the value of
the top eigenvalue of a matrix—just exhibit any unit vector v, and v>Mv bounds λ1 from
below. The same trick can be used for lower eigenvalues, provided the previous eigenvectors
have been identified (so that the orthogonality constraint can be met).

4 A Spectral Approach to Planted Bisection

4.1 The Spectrum of the Expected Adjacency Matrix

We now return to the problem of recovering the planted bisection in the model from Section 2.
Recalling the canonical spectral algorithm (Section 2.4), let M denote the adjacency matrix
of the input graph G = (V,E) (a random variable). The key question for understanding the
algorithm is: what does the second eigenvector of M have to do with anything?

Fix the random choice (S, T ) of a planted bisection. Let’s look at the “expected adjacency

matrix” M̂, where the randomness is over the choice of edges (given the choice of (S, T )).
After permuting the rows and columns so that those corresponding to S come before those
in T , M̂ looks like

M̂ =



p p · · · p q q · · · q
...

...
...

...
...

...
...

...
p p · · · p q q · · · q
q q · · · q p p · · · p
...

...
...

...
...

...
...

...
q q · · · q p p · · · p


. (4)

Well almost: the adjacency matrix M has zeroes along its diagonal (with probability 1),

while the matrix M̂ has p’s along its diagonal. That it, M̂ is the expected value of M, plus
pI, where I is the n× n identify matrix. We won’t think twice about adding or subtracting
a multiple αI of the identity matrix for convenience—it leaves the eigenvectors unchanged
(why?) and every eigenvalue shifts by α.

7This holds no matter how u1, . . . ,ui−1 are chosen from the previous argmax’s.

7



The point is that the matrix M̂ is simple enough that we can just explicitly compute its
eigenvectors and eigenvalues. First, note that there are only two distinct types of columns;
this implies that M̂ has rank (at most) 2.8 The rank of a symmetric matrix is exactly the
number of nonzero eigenvalues (counting multiplicity). This is evident from the spectral
decomposition (3)—the rank of the diagonal matrix D is obviously the number of nonzero
entries, and the orthogonal matrices Q and Q>, as nonsingular matrices, preserve the rank.
Thus n− 2 of M̂’s eigenvalues are 0. It remains to determine the other two.

Staring at (4), one eigenvector is easy to guess. Let v be the all-ones vector. Then

M̂v = (n
2
(p+ q), . . . , n

2
(p+ q)) = n

2
(p+ q)v, and so M̂ has one eigenvalue equal to n

2
(p+ q).

Remember that eigenvectors are orthogonal to each other. So our next guess should be
orthogonal to the all-ones vector—equivalently, the entries of the vector should sum to 0.
The simplest scenario would be if the eigenvector takes on only two possible values (one
positive, one negative). So the sensible next guess is to take w to be the vector that is 1 on
coordinates corresponding to S and −1 on coordinates corresponding to T . (Our algorithm
doesn’t know S and T , of course, but we’re just doing analysis here.) Since |S| = |T |, we

have 〈v,w〉 = 0. And M̂w is n
2
(p − q) in coordinates corresponding to S, and n

2
(q − p) in

coordinates corresponding to T (as you should check). Thus w is indeed an eigenvector,
with eigenvalue n

2
(p− q).

To summarize, as p > q > 0, the expected adjacency matrix M̂ has first eigenvalue
n
2
(p + q), second eigenvalue n

2
(p − q), and remaining eigenvalues 0. Moreover, the second

eigenvector has opposite signs for vertices in S and for vertices in T . Thus the canonical
spectral algorithm (Section 2.4) works perfectly when applied to M̂—the planted bisection
can be immediately read off from the sign pattern of its second eigenvector (!).

4.2 The High-Level Approach

The hope is that, since the adjacency matrix M of G has expected value M̂ (minus pI), the
canonical spectral algorithm continues to work well (with high probability) when applied
to M. We will execute this plan using some basic facts from matrix perturbation theory,
which track how the eigenvalues and eigenvectors of a matrix change when another (ideally
“small”) matrix is added to it.

In more detail, define R = M−M̂−pI, so that M = M̂+R+pI. We think of M̂ as the
“base matrix” and R as the “perturbing matrix.” The random matrix R is easy to describe:

R =


−p/(1− p) −q/(1− q)

−q/(1− q) −p/(1− p)

 . (5)

8Recall there are many equivalent definitions of the rank of a matrix, including the maximum number
of linearly independent columns, the maximum number of linearly independent rows, and the dimension of
the range of the matrix (which is a subspace of the target space).

8



where “−p/(1 − p)” means that an entry is either −p (with probability 1 − p) or 1 − p
(with probability p), and similarly for “−q/(1− q).” The picture in (5) is inaccurate on the
diagonal, which is −p with probability 1. The entries above the diagonal are independent;
their values then force the values of the entries below the diagonal (as the matrix is symmetric
with probability 1).

The hope is now that:

1. The “noise” R is small relative to the “signal” M̂ about the planted bisection.

2. When noise is small compared to the signal, adding the noise doesn’t change the signal
(i.e., the second eigenvector) by much.

Of course, to implement this we need to define what we mean by a matrix being “small” and
by a vector “not changing much.” We tackle these issues in Sections 5 and 6, respectively.

5 Eigenvalues of Random Symmetric Matrices

Write R̂ = R + pI, so that R̂ has the form in (5) except with zeroes on the diagonal (with

probability 1). Note that every entry of R̂ has expectation 0 (as you should check) and is

bounded between −1 and 1. Does this imply that R̂ is “small” with high probability?
We’ll measure the “size” of a symmetric matrix using the operator norm, which is just

the largest magnitude of one of its eigenvalues. That is, if M has eigenvalues λ1 ≥ · · ·λ2 ≥
· · · ≥ λn, then ‖M‖ = maxi |λi|, which in turn is either λ1 or −λn, whichever is larger.
Equivalently, the operator norm is largest magnitude by which M stretches any vector.9

As you can imagine, there has been a lot of work on understanding the distribution of
eigenvalues of random symmetric matrices.10 Here is tightest quantitative bound known (as
a function of n).

Theorem 5.1 ([18]) Let P be a random matrix with the following properties:

(i) With probability 1, P is symmetric, with only zeroes on the diagonal.

(ii) Each random variable Pij has expectation 0, and is bounded between -1 and 1.

(iii) The random variables {Pij}1≤i<j≤n are independent.

Then with probability approaching 1 as n→∞,

‖P‖ ≤
√
n+O(n1/4).

9In particular, ‖Mv‖ ≤ ‖M‖‖v‖ for every v, where the first and third norms denote the Euclidean
norm, and the middle one the operator norm.

10For example, Wigner’s semicircle law states that as the dimension n of a random symmetric matrix goes
to infinity (where each entry has mean 0 and variance 1), the distribution over its eigenvalues (after scaling
by
√
n) has limiting density f(x) = 1

2π

√
(4− x2)+, where y+ denotes max{0, y} (i.e., a semi-circle) [19].

9



Theorem 5.1 takes a fair bit of work and is outside the scope of this class. It’s not so
difficult to prove slightly weaker bounds, however, which are good enough for our purposes.
We’ll sketch a proof of a bound that is weaker by a Θ(

√
log n) factor.

Theorem 5.2 Under the assumptions of Theorem 5.1, there is a constant c2 > 0 such that,
for every δ > 0, with probability at least 1− δ,

‖P‖ ≤ c2

√
n log n log 1

δ
.

A slightly more complicated variation of the following argument gives a bound of O(
√
n),

which is weaker than the bound in Theorem 5.1 by only a constant factor (see Theorem 12.1
and Homework #5).

The variational characterization of eigenvalues (Theorem 3.2) implies that to upper bound
the operator norm of a matrix, it is enough to bound the maximum magnitude by which
any vector gets stretched (possibly after flipping) by the matrix. Our proof sketch now has
three steps: (1) proving that any given direction is unlikely to be stretched much by P;
(2) that the set of all directions is well approximated by a finite set, to which the union
bound applies; (3) if no direction in the finite set is stretched much by P, then no direction
at all is stretched much. Homework #5 asks you to fill in the details of each of the steps,
corresponding to the following three lemmas.

Lemma 5.3 Let u be a unit vector and t ≥ 0. Under the assumptions of Theorem 5.1,

PrP
[
|u>Pu| ≥ t

]
≤ 2e−t

2

.

Note that assumption (ii), that every entry of P has mean zero, implies that, for every fixed
u, the expected value of u>Pu =

∑
i,j Pijuiuj is 0 (by linearity of expectation). Lemma 5.3

then follows from a concentration inequality known as Hoeffding’s inequality, which is a
cousin of the Chernoff bound, parameterized by additive rather than multiplicative error.

The next lemma saves us from trying to take a union bound over the infinite set of unit
vectors. By an ε-net of a metric space (X, d), we mean a subset S ⊆ X such that, for every
x ∈ X there exists y ∈ S with d(x, y) < ε. That is, every point of X is close to one of the
representatives in the ε-net S.

Lemma 5.4 The sphere in Rn admits an ε-net N with |N | ≈ (2
ε
)n (with respect to Euclidean

distance).

The ε-net can be constructed greedily, with termination following from a volume argument.
The final lemma extends an upper bound on |u>Pu| for all ε-net points u ∈ N to one

for all points of the unit sphere (with minor loss).

Lemma 5.5 If |u>Pu| ≤ t for all vectors u in an ε-net of the sphere in Rn, then |u>Pu| ≤
t+ nε for all unit vectors u ∈ Rn.

10



Lemmas 5.3–5.5 imply Theorem 5.2. To see this, take ε = 1
n

(say). Then the size of
the ε-net N in Lemma 5.4 is ≈ (2n)n. Combining Lemma 5.3 with a union bound over the
ε-net points in Lemma 5.4 shows that |u>Pu| ≤ t for all u ∈ N , except with probability

at most (2n)n · 2e−t2 . This failure probability is at most δ provided t = Ω(
√
n log n log 1

δ
).

In this case, by Lemma 5.5, |u>Pu| ≤ t + 1 = Θ(
√
n log n) for all unit vectors u (for

constant δ). The variational characterization of eigenvalues (Theorem 3.2) then implies that
‖P‖ = O(

√
n log n) with arbitrarily large constant probability.

6 A Little Matrix Perturbation Theory

In this section we make precise the idea that adding a perturbation matrix P to a base
matrix M̂ should not change the eigenvectors much, provided the “noise” is significantly
smaller than “the signal.” The formal statement is a famous result (from 1970) known as
the Davis-Kahan theorem.11

Theorem 6.1 (Davis-Kahan Theorem [6]) Let M̂ be an n × n symmetric matrix with
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn and corresponding unit-length eigenvectors u1,u2, . . . ,un.
Let P be an n × n symmetric matrix, and let M := M̂ + P have unit-length eigenvectors
v1, . . . ,vn. Let θi be the smaller angle between the lines through ui and vi. Then

sin θi ≤
2‖P‖

minj 6=i |λi − λj|
. (6)

We interpret each side of the bound (6) in turn. On the left hand side, note that θi ≤ π
4

(as
the smaller angle between two vectors), and we can multiply ui and/or vi by -1 so that the
angle between them is θi. Elementary trigonometry then implies that

‖ui − vi‖ ≤
√

2 sin θi, (7)

with equality holding when θi = π
4

(as you should check). Thus the left-hand side of (6) is
really just a bound on the Euclidean distance between the ith eigenvector before and after the
perturbation matrix P is added. On the right-hand side of (6), the denominator is the size
of the “buffer zone” between the ith eigenvalue and the other eigenvalues.12 The numerator
of the right-hand side is the “size” of the perturbation, as measured by the operator norm
(i.e., largest magnitude of any eigenvalue). So what Theorem 6.1 really says is:

if all of the eigenvalues of the perturbation matrix have magnitude well less than the
buffer zone around the ith eigenvalue of the base matrix, then the perturbation has
little effect on the ith eigenvector.

11Actually, the real theorem does not have the “2” in the numerator, but the weaker bound here is
sufficient for our purposes.

12Simple examples show that when two eigenvalues are very close together, even very small perturbations
can radically change the corresponding eigenvectors (Homework #5).

11



The proof of Theorem 6.1 is actually not all that hard, and we give it in Section 7. The
reader is also free to skip to Section 8, where we put all of our tools together for the recovery
of a planted bisection.

7 Proof of the Davis-Kahan Theorem

First, we need the following lemma from linear algebra, which is sort of a “triangle inequality
for eigenvalues.” It states that when one matrix A is added to another one B, all of the
eigenvalues of A move by at least the minimum and by at most the maximum eigenvalue of
B. We leave the proof to Homework #5.

Lemma 7.1 Let A,B be n × n symmetric matrices with eigenvalues λ1 ≥ · · · ≥ λn and
µ1 ≥ · · · ≥ µn. For every i = 1, 2, . . . , n, the ith eigenvalue νi of A + B satisfies

λi + µn ≤ νi ≤ λi + µ1.

We can now prove Theorem 6.1.

Proof of Theorem 6.1: The key idea is to focus on how much the new ith eigenvector moves
under the old matrix M̂ (i.e., M̂vi), relative to how it would move were it actually its ith
eigenvector. The proof has two steps:

(1) When λi is well separated from the other eigenvalues, if θi is big, then M̂vi must be
far from λivi.

(2) If ‖R‖ is small, then M̂vi is not far from λivi.

For the Step 1 details, first write the new ith eigenvector vi in the basis of the old ones:

vi =
n∑
j=1

cjuj.

Since the uj’s are orthonormal, cj = 〈vi,uj〉. Since ui,vi are both unit vectors, we have
ci = cos θi.

Next, let δ denote minj 6=i |λj − λi|. Since M̂ operates separately on the uj’s, we have

M̂vi =
n∑
j=1

λjcjuj,

or

M̂vi − λivi =
n∑
j=1

(λj − λi)cjuj.

12



Thus,

‖M̂vi − λivi‖
2

=
n∑
j=1

(λj − λi)2c2j

≥ δ2
∑
j 6=i

c2j

= δ2 (1− c2i )︸ ︷︷ ︸
=1−cos2 θi

(8)

= δ2 sin2 θi,

where in (8) we’re using that
∑n

j=1 c
2
j = 1 (since the uj’s are an orthonormal basis and vi is

a unit vector). Rewriting, we have

sin θi ≤
1

δ
‖M̂vi − λivi‖. (9)

Thus θi is big only if M̂vi is far from λivi.
For the details of the second step, we write

‖M̂vi − λivi‖ = ‖(M−P)vi − λivi‖
= ‖(M− λiI)vi −Pvi‖
≤ ‖(M− λiI)vi‖+ ‖Pvi‖
= ‖(µi − λi)vi‖+ ‖Pvi‖,

where the inequality is from the triangle inequality for the Euclidean norm, and µi denotes
the ith eigenvalue of M (corresponding to the eigenvector vi). Now, Lemma 7.1 implies that

µi ≤ λi + ‖P‖,

and hence
‖M̂vi − λivi‖ ≤ ‖‖P‖vi‖+ ‖Pvi‖ ≤ 2‖P‖, (10)

since vi is a unit vector.
Combining (9) and (10) yields

sin θi ≤
2‖P‖
δ

,

as desired. �

8 Planted Bisection: Partial Recovery

We can now put all of the pieces together. First, we have M̂ (see (4)), the expected adjacency

matrix plus pI, for which λ1(M̂) = n
2
(p+ q), λ2(M̂) = n

2
(p− q), and λi(M̂) = 0 for all i ≥ 3

13



(Section 4.1). We can assume that q > p
3

(otherwise the problem is easy—why?) and so

λ2(M̂) is closer to 0 than to λ1(M̂). Thus, if

p− q ≥ c1

√
log n√
n

for a constant c1 > 0, then

min
i 6=2

∣∣∣λ2(M̂)− λi(M̂)
∣∣∣ = λ2(M̂) ≥ c1

√
n log n

2
. (11)

Also, recall from Section 4.1 that the second eigenvector u2 of M̂ corresponds precisely to
the planted bisection—all entries of u2 are ± 1√

n
, with the sign depending on which side of

the bisection a vertex is on.
Second, we have the perturbation matrix R in (5), which is defined so that M̂+R equals

the (random) adjacency matrix M of the input graph. We can apply Theorem 5.2 to the

random matrix R̂ = R + pI, to obtain

‖R‖ =
n

max
i=1
|λi(R)| = −p+

n
max
i=1

∣∣∣λi(R̂)
∣∣∣ ≤ c3

√
n log n (12)

with high probability, where c3 > 0 is a sufficiently large constant.
Let v2 denote the second eigenvector of the actual adjacency matrix M. Multiply u2

and/or v2 by -1 as necessary, so that the angle between them is at most π
4
. Plugging in (11)

and (12) into the numerator and denominator of the bound (6) of the Davis-Kahan theorem,
and using (7), we have (with large probability)

‖u2 − v2‖ ≤
4
√

2c3
c1

. (13)

Now let (A,B) be the cut defined by v2, as in the third step of the canonical spectral
algorithm of Section 2.4, and suppose that ` vertices are classified incorrectly with respect to
the planted bisection. (Note that (A,B) need not be a bisection.) Equivalently, let ` denote
the number of coordinates for which u2,v2 have opposite signs. Since all entries of u2 are
± 1√

n
, we have

‖u2 − v2‖ ≥
√
`

n
,

and hence (with large probability, using (13))

` ≤
(

32c23
c21

)
n,

which is at most n
32

, provided we take c1 ≥ 32c3. (Recall that c3 is derived from Theorem 5.1
and hence is not under our control, but we can choose c1 in our assumption about the gap
between p and q.)

14



So we’ve shown that, with high probability, the canonical spectral algorithm of Section 2.4
correctly classifies at least 97% of the vertices of the input graph. This type of result is known
as partial recovery—the algorithm can make some errors, but it does much better than
random guessing. The next section adds a postprocessing step to achieve exact recovery,
with all vertices correctly labeled (w.h.p.).13

9 Planted Bisection: Exact Recovery

The basic idea for turning a mostly correct solution into an entirely correct one is to, for each
vertex v in parallel, classify v according to the side of the mostly correctly cut that contains
more of v’s neighbors. In effect, v’s neighbors “vote” for which side of the bisection v should
be on. Intuitively, because p− q = Ω(

√
log n/

√
n) and there are not too many errors, every

vertex will have more neighbors on the appropriate side than on the other side. In practice
(and maybe also in theory), the most straightforward implementation of this should work
fine. To avoid problematic dependencies in the analysis, however, it is convenient to first split
the input graph into two, and use the mostly correct solution of each side to correctly classify
the vertices on the other side (to enable the principle of deferred decisions).

The Final Planted Bisection Algorithm

1. Randomly partition the vertex set V into two equal-size groups, V1 and
V2. Let H1 and H2 denote the subgraphs of G induced by V1 and V2.

2. Run the canonical spectral algorithm separately on H1 and H2, to obtain
cuts (A1, B1) of H1 and (A2, B2) of H2.

3. Place each vertex v ∈ V1 into either Â1 or B̂1, according to whether v
has more neighbors in A2 or B2 (breaking ties arbitrarily). Similarly,
place each vertex v ∈ V2 into either Â2 or B̂2, according to whether v
has more neighbors in A1 or B1.

4. Return either the cut (Â1 ∪ Â2, B̂1 ∪ B̂2) or the cut (Â1 ∪ B̂2, B̂1 ∪ Â2),
whichever one is a bisection with fewer crossing edges. (If neither is a
bisection, the algorithm fails.)

This is the final algorithm, and it correctly recovers the entire planted partition with high
probability; see Homework #5 for more details.

13If we replace the coarse bound in Theorem 5.2 by that in Theorem 5.1 or 12.1, everything in this section
remains true with an even smaller gap p − q ≥ c√

n
for sufficiently large c. However, we still need the extra

√
log n factor in the gap to achieve exact recovery in Section 9.

15



10 The Planted Clique Problem

10.1 The Model

In the maximum clique problem, the goal is to identify the largest subset of vertices of an
undirected graph that are mutually adjacent. The problem is fundamental and also comes
up in applications, such as social network analysis (where cliques indicate a tightly knit
community). The problem NP -hard, and is even NP -hard to approximate to within a
factor of n1−ε for any constant ε > 0. (Note that an n-approximation is trivial — just take
any vertex.) Thus worst-case analysis offers no guidance as to how to solve the problem, and
it makes sense to think about the exact recovery of the maximum clique under assumptions,
such as with a generative model with a planted solution.

Again, just to get calibrated, let’s start by looking at Erdös-Renyi random graphs. In
a random graph in the G(n, 1

2
) model, the size of the maximum clique is very likely to be

≈ 2 log2 n.14 To see heuristically why this should be true, note that for an integer k, the
expected number of cliques on k vertices in a random graph of G(n, 1

2
) is exactly(

n

k

)
2−(k

2) ≈ nk2−k
2/2,

which is 1 precisely when k = 2 log2 n. That is, 2 log2 n is roughly the largest k for which we
expect to see at least one k-clique.

On the other hand, there is no known polynomial-time algorithm that computes, with
high probability, a clique significantly larger than ≈ log2 n in a random graph from G(n, 1

2
).

And trivial heuristics — like starting with an arbitrary vertex and repeatedly adding an
arbitrary vertex that is adjacent to everything already chosen — already obtain the log2 n
bound with high probability [11]. Thus the Erdös-Renyi model fails to distinguish between
different efficient heuristics for the Maximum Clique problem.

Jerrum [9] suggested the following planted version of the maximum clique problem. Fix
a vertex set V with n vertices and a value for the parameter k.

1. Choose a random subset Q ⊆ V of k vertices.

2. Add an edge between each pair of vertices in Q.

3. Independently for each pair (i, j) of vertices with at least one of i, j not in Q, include
the edge (i, j) with probability 1

2
.

The difficulty of recovering the planted clique Q clearly depends on how big k is. When k
is less than 2 log2 n, the planted clique will likely not even be a maximum clique, and will
be impossible to recover with reasonable probability (even given unbounded computational
power). If k is barely less than n, then the problem is easy to solve (e.g., using brute-force

14A canonical application of the “second moment method” [2] shows that this random variable is unbe-
lievably concentrated: there is an integer k ≈ 2 log2 n such that almost every n-vertex graph has maximum
clique size either k or k + 1.

16



Figure 1: Degree distribution for G(n, 1/2), before planting the clique. The Hoeffding and
union bounds imply that the spread is O(

√
n lg n) with high probability. If k = Ω(

√
n lg n)

then the planted clique will consist of the k vertices with the highest degrees.

search to identify the vertices not in Q). So the key question in this model is: how big does
the planted clique size k need to be before exact recovery is possible in polynomial time
(with high probability)? In contrast to the planted bisection problem, here this question
is still open! We’ll conclude this lecture by covering the state-of-the-art: polynomial-time
exact recovery for k = Ω(

√
n).

10.2 An Easy Positive Result

Recall the algorithmic approaches discussed in Section 2.3: combinatorial, spectral, and
SDP-based (ordered from simplest and least powerful to most complex and powerful). For
“overly big” values of the parameter k, the planted clique problem is “too easy,” meaning
that it can be solved by algorithms that are too naive to do well in practice. Most notably,
Kucera [12] observed that the planted clique problem is easy when k = Ω(

√
n log n). To see

this, think about generating a random instance of the planted clique problem in the following
way: first sample a random graph from the usual Erdös-Renyi G(n, 1

2
) model; then choose

k vertices at random and “fill them in” to make them a clique. After the first step, the
expected degree of each vertex is (n− 1)/2, and with high probability, all vertex degrees are
n
2
± c
√
n log n for a suitable constant c (Figure 1). Filling in the k-clique boosts the degree

of those k vertices by roughly k/2 each, without affecting the degrees of vertices outside the
clique—so in Figure 1, the clique vertices all catapult k/2 positions to the right. Thus, if
k > 4c

√
n log n, the clique vertices are the k vertices of the graph with the largest degrees

(with high probability); the clique is then obviously recoverable in linear time. For further
details, see Homework #5.

11 Planted Clique: A Spectral Algorithm

To force ourselves to design better algorithms that are more likely to have robustly good
performance in practice, let’s move the goal posts and shoot for efficient exact recovery of the

17



planted clique when k = Θ(
√
n). As we’ll see, even this modest reduction (from Θ(

√
n log n)

to Θ(
√
n)) seems to require more sophisticated algorithms.

Amazingly, we’ll use the same initial two steps of the canonical spectral algorithm (Sec-
tion 2.4) to solve the planted clique problem as we did for the planted bisection problem.
Thus, even though these are quite different problems, the second eigenvector of the adja-
cency matrix in some sense captures both of them! We will use a different third step and
postprocessing step, however, which are tailored to the planted clique problem.

The Planted Clique Algorithm

1. Let M denote the adjacency matrix of the given graph G = (V,E)—the
V × V matrix with Mij = 1 if and only if (i, j) ∈ E.

2. Compute the second eigenvector v2 of M (indexed by V ).

3. Let A ⊆ V denote the vertices that correspond to the k coordinates of
v2 that have the largest magnitudes.

4. Return
B = {i ∈ V : i has at least 3

4
k neighbors in A}.

The first three steps are analogous to the canonical spectral algorithm in Section 2.4. The
fourth step is a simpler version of the “voting-based postprocessing” used in Section 9, and
again serves the purpose of turning a mostly correct solution into an exactly correct one.

This algorithm has the following guarantee.

Theorem 11.1 ([1]) When k ≥ c4
√
n for a sufficiently large constant c4 > 0, with high

probability, the spectral algorithm above recovers the planted clique.

Spectral algorithms are not as popular in practice for clique-finding as they are for graph
partitioning, but still, Theorem 11.1 is definitely a step in the right direction.

Improving the upper bound in Theorem 11.1 is a major open question—no better guar-
antees are known, so you are learning the state-of-the-art!15 The bound in Theorem 11.1
can be improved from k ≥ c4

√
n for some constant c4 to k ≥ ε

√
n for every constant ε (at

the expense of running time exponential in 1
ε
); see Homework #5.

15The computational complexity of recovering the planted clique for k = o(
√
n) is highly unclear. As

long as k ≥ c log n for a sufficiently large constant c, the problem can be solved in quasi-polynomial (i.e.,
nO(logn)) time by brute-force search, with high probability. (This is clear when k = Θ(log n), but is also
true for larger k—why?) Many have conjectured that it is a hard problem for k = o(

√
n). Showing this

via the theory of NP -completeness doesn’t seem possible, since planted clique is fundamentally an average-
case problem, while NP -completeness is for worst-case complexity. (There is a theory of average-case
complexity (e.g. [4]), but it has not proven relevant for the planted clique problem.) The strongest evidence
of intractability thus far is unconditional lower bounds for concrete but powerful models of computation,
such as the sum-of-squares hierarchy [3].

Indeed, intractability of the planted clique problem with k = o(
√
n) is increasingly being used as a novel

hardness assumption. There is even a (theoretical) cryptosystem based on it [10]. For example, the problem
is used in [7] to identify a barrier to finding certain approximate Nash equilibria in two-player games.

18



12 Planted Clique: Analysis

In this final section, we give a proof sketch of Theorem 11.1. Happily, we can just reuse
the exact same analysis template that worked so well for the planted bisection problem
(Sections 2–9).

The first step is to examine the “expected adjacency matrix” M̂ and compute its eigen-
vectors and eigenvalues. For the planted clique problem, with edge density 1

2
outside the

clique, we have

M̂ =



1 1 · · · 1 1
2

1
2
· · · 1

2
...

...
...

...
...

...
...

...
1 1 · · · 1 1

2
1
2
· · · 1

2
1
2

1
2
· · · 1

2
1
2

1
2
· · · 1

2
...

...
...

...
...

...
...

...
1
2

1
2
· · · 1

2
1
2

1
2
· · · 1

2


, (14)

where we have permuted the rows and columns so that the vertices of the planted clique Q
come first. (So don’t be misled by the picture: if k = Θ(

√
n), then the left and top “halves”

of the matrix contain far less than half of the columns and rows.) This matrix M̂ differs
from the expected adjacency matrix in that it has 1s and 1

2
s (instead of 0s) on the diagonal;

but this difference has little effect on the eigenvectors or eigenvalues of the matrix, so we’ll
ignore this discrepancy. Note that M̂ has only two different types of columns, so its rank is
(at most) 2, and n− 2 of its eigenvalues are zero. What about the others?

Despite its simplicity, it’s fairly annoying to exactly compute the two non-zero eigenvalues
of M̂ and the corresponding eigenvectors. Instead, we’ll identify two simple vectors that act
as “approximate eigenvectors” in some sense; this will be sufficient to get the proof approach
from Sections 2–9 to work.

First, let’s try the same first vector as for planted bisection, the all-ones vector y =
(1, 1, . . . , 1). Then

M̂y = (k + n−k
2
, . . . , k + n−k

2︸ ︷︷ ︸
k times

, n
2
, . . . , n

2︸ ︷︷ ︸
n− k times

).

Thus y is not actually an eigenvector. But since k = Θ(
√
n) is much less than n, the first

k coordinates are not too far from n
2
. So let’s deem y an “approximate eigenvector with

approximate eigenvalue n
2
.”

Next we identify a second vector, orthogonal to y, that can act as another approximate
eigenvector. Being orthogonal to y means that the entries of the vector z should sum to 0.
Thus we’ll need both positive and negative entries. The simplest solution would be to have
all of the positive coordinates have the same value, and similarly for all of the negative
coordinates. How should we choose which vertices are positive or negative? According to
whether or not they’re in the planted clique Q, of course.

Formally, define
z = (n− k, . . . , n− k︸ ︷︷ ︸

k times

,−k, . . . ,−k︸ ︷︷ ︸
n− k times

).

19



Then z is orthogonal to y, and

M̂z = (1
2
(n− k)k, . . . , 1

2
(n− k)k︸ ︷︷ ︸

k times

, 0, . . . , 0︸ ︷︷ ︸
n− k times

).

Stretching the truth a bit further, let’s deem z an “approximate eigenvector with eigen-
value k

2
.” Notice that the planted clique can be immediately read off of z, as the vertices

corresponding to the k coordinates of z with the largest magnitudes.
For the rest of the analysis, to keep things simple, we’ll cheat and act as if y and z

really are eigenvectors of M̂, with eigenvalues n
2

and k
2
. There are two ways to extend the

analysis to make it legitimate. The first way is to compute the actual non-zero eigenvalues
and corresponding eigenvectors of M̂ and run the following analysis on them, instead.16 The
second way is to rework the matrix perturbation theory from Section 6 so that it continues
to work for “approximate eigenvectors;” this is more or less what is done in the paper [1].

So, assume that u1 = y
‖y‖ and u2 = z

‖z‖ are the first and second eigenvectors of M̂, with

eigenvalues n
2

and k
2
. (Recall that n > k > 0 and that the other n − 2 eigenvalues are 0.)

As in our planted bisection analysis, since it is the second eigenvector u2 that contains the
“signal” about the planted clique, we care about the “buffer zone” around the corresponding
eigenvalue. For k = o(n), we have

min
j 6=2
|λ2 − λj| = k

2
. (15)

(Larger values of k are irrelevant since in that case we can just use the “top k degrees”
algorithm from Section 10.)

With an eye toward the Davis-Kahan theorem (Theorem 6.1), we express the (random)

adjacency matrix M of the input graph as the sum of the “base matrix” M̂ and the “per-
turbation matrix” R, where

R =



0 0 · · · 0 ±1
2
±1

2
· · · ±1

2
...

...
...

...
...

...
...

...
0 0 · · · 0 ±1

2
±1

2
· · · ±1

2

±1
2
±1

2
· · · ±1

2
±1

2
±1

2
· · · ±1

2
...

...
...

...
...

...
...

...
±1

2
±1

2
· · · ±1

2
±1

2
±1

2
· · · ±1

2


.

After ignoring minor discrepancies on the diagonal, we have M = M̂ + R. The matrix R
satisfies the assumptions of Theorem 5.2, but the coarse upper bound of that theorem only
allows us to prove polynomial-time exact recovery for k = Ω(

√
n log n), a regime where the

trivial “top k degrees” algorithm already works. To get the more interesting recovery result
with k = Θ(

√
n), we need a better bound on the eigenvalues of random symmetric matrices.

Theorem 5.1 would certainly be good enough; so is the following bound, whose proof is
outlined on Homework #5.

16This is messy but can be done, with a closed-form formula for the eigenvectors as a function of n and
k. See also Homework #5.

20



Theorem 12.1 Under the assumptions of Theorem 5.1, there is a constant c5 > 0 such
that, with probability approaching 1 as n→∞,

‖P‖ ≤ c5
√
n. (16)

Let v2 denote the second eigenvector of M. Plugging in (15) and (16) into the numerator
and denominator of the bound (6) of the Davis-Kahan theorem, and using (7), we have
(w.h.p.)

‖u2 − v2‖ ≤
√

2 · 2c5
√
n

k/2
≤ 4
√

2 · c5
c4
, (17)

since by assumption k ≥ c4
√
n.

It remains to connect the number of errors made in the third step of the spectral algorithm
with the eigenvector v2 to the Euclidean distance between u2 and v2. Back in z, the k
coordinates corresponding to the clique vertices have value n − k and the rest have value
−k. The (approximate) eigenvector u2 is the same, except with all entries scaled down by
‖z‖ =

√
(n− k)nk.

Now suppose that there are ` vertices in A—recall A is the set of vertices with the k
largest magnitudes in v2—that do not belong to the planted clique Q. How did this happen?
All of the magnitudes of the ` vertices in A \ Q must exceed all of the magnitudes of the `
vertices in Q\A (the excluded clique vertices). But in u2, there is a gap of n−2k√

(n−k)nk
between

the magnitudes of clique and non-clique vertices. In particular, for at least one of the sets
A \Q or Q \A, every vertex in the set changed in magnitude by at least n−2k

2
√

(n−k)nk
(between

u2 and v2). For if not, there would be vertices v ∈ A \ Q and w ∈ Q \ A such that v’s
magnitude in v2 is less than w’s (contradicting that v ∈ A while w /∈ A).

The upshot is that if there are ` clique vertices missing from the set A computed by the
algorithm, then

‖u2 − v2‖ ≥
√
` · n− 2k

2
√

(n− k)nk

which, assuming that n is sufficiently large and using that k = o(n), implies that

‖u2 − v2‖ ≥
√
`

3
√
k
. (18)

Combining (17) and (18), we obtain that

` ≤ 9k · ‖u2 − v2‖2 ≤ k · 288 · c
2
5

c24

holds with high probability. This bound is at most k
6

provided we choose c4 ≥ 17c5.
17

17As mentioned earlier, an additional idea can reduce this value of c4 to an arbitrarily small constant ε,
at the expense of running time exponential in 1

ε (Homework #10).

21



Thus, with high probability, the set A computed by our spectral algorithm is “mostly
correct,” in that it includes at least a 5

6
fraction of the vertices in the planted clique. In this

case, every clique vertex will have at least 5
6
k neighbors in A. We expect non-clique vertices

to have only ≈ k
2

neighbors in A (see Homework #5 for the formal argument). Thus in
the final step of the algorithm, the set B = {i ∈ V : i has at least 3

4
k neighbors in A} will

contain precisely the vertices of the planted clique Q (with high probability).

References

[1] N. Alon, M. Krivelevich, and B. Sudakov. Finding a large hiddin clique in a random
graph. Random Structures & Algorithms, 13(3-4):457–466, 1998.

[2] N. Alon and J. H. Spencer. The Probabilistic Method. Wiley, 2008. Third edition.

[3] B. Barak, S. B. Hopkins, J. A. Kelner, P. Kothari, A. Moitra, and A. Potechin. A
nearly tight sum-of-squares lower bound for the planted clique problem. In Proceedings
of the 57th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 428–437, 2016.

[4] A. Bogdanov and L. Trevisan. Average-case complexity. Foundations and Trends in
Theoretical Computer Science, 2(1):1–106, 2006.

[5] T. N. Bui, S. Chaudhuri, F. T. Leighton, and M. Sipser. Graph bisection algorithms with
good average case behavior. Combinatorica, 7(2):171–191, 1987. Preliminary version in
FOCS ’84.

[6] C. Davis and W. M. Kahan. The rotation of eigenvectors by a pertubation. III. Journal
of Numerical Analysis, 7:1–46, 1970.

[7] E. Hazan and R. Krauthgamer. How hard is it to approximate the best Nash equilib-
rium? In Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 720–727, 2009.

[8] P. W. Holland, K. Lasket, and S. Leinhardt. Stochastic blockmodels: First steps. Social
Networks, 5(2):109–137, 1983.

[9] M. Jerrum. Large cliques elude the metropolis process. Random Structures & Algo-
rithms, 3(4):347–360, 1992.

[10] A. Juels and M. Peinado. Hiding cliques for cryptographic security. Designs, Codes,
and Cryptography, 20(3):269–280, 2000.

[11] R. M. Karp. The probabilistic analysis of some combinatorial search algorithms. In
J. F. Traub, editor, Algorithms andComplexity: New Directions and Recent Results,
pages 1–19. Academic Press, 1976.

22



[12] L. Kucera. Expected complexity of graph partitioning problems. Discrete Applied
Mathematics, 57(2-3):193–212, 1995.

[13] L. Massoulie. Community detection thresholds and the weak Ramanujan property.
arXiv:1311.3085, 2013.

[14] F. McSherry. Spectral partitioning of random graphs. In Proceedings of the 42nd Annual
Symposium on Foundations of Computer Science (FOCS), pages 529–537, 2001.

[15] E. Mossel, J. Neeman, and A. Sly. Stochastic block models and reconstruction.
arXiv:1202.1499, 2012.

[16] E. Mossel, J. Neeman, and A. Sly. A proof of the block model threshold conjecture.
arXiv:1311.4115, 2013.

[17] D. A. Spielman. Lecture notes on spectral graph theory. Yale University, 2015.

[18] V. Vu. Spectral norm of random matrices. Combinatorica, 27(6):721–736, 2007.

[19] E. P. Wigner. On the distribution of the roots of certain symmetric matrices. Annals
of Mathematics, 67(2):325–327, 1958.

23


	Preamble
	The Planted Bisection Problem
	Erdös-Renyi Random Graphs
	Random Graphs with a Planted Solution
	Algorithmic Approaches
	A Canonical Spectral Algorithm

	Linear Algebra Review
	Eigenvectors and Eigenvalues
	Spectral Decomposition
	Variational Characterization of Eigenvalues

	A Spectral Approach to Planted Bisection
	The Spectrum of the Expected Adjacency Matrix
	The High-Level Approach

	Eigenvalues of Random Symmetric Matrices
	A Little Matrix Perturbation Theory
	Proof of the Davis-Kahan Theorem
	Planted Bisection: Partial Recovery
	Planted Bisection: Exact Recovery
	The Planted Clique Problem
	The Model
	An Easy Positive Result

	Planted Clique: A Spectral Algorithm
	Planted Clique: Analysis

