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1. OVERVIEW
Social computing encompasses the mechanisms through

which people interact with computational systems: crowd-
sourcing systems, ranking and recommendation systems, on-
line prediction markets, citizen science projects, and collab-
oratively edited wikis, to name a few. These systems share
the common feature that humans are active participants,
making choices that determine the input to, and therefore
the output of, the system. The output of these systems
can be viewed as a joint computation between machine and
human, and can be richer than what either could produce
alone. The term social computing is often used as a synonym
for several related areas, such as “human computation” and
subsets of “collective intelligence”; we use it in its broadest
sense to encompass all of these things.

Social computing is blossoming into a rich research area of
its own, with contributions from diverse disciplines includ-
ing computer science, economics, and other social sciences.
The field spans everything from systems research directed
at building scalable platforms for new social computing ap-
plications to HCI research directed towards user interface
design, from studies of incentive alignment in online appli-
cations to behavioral experiments on evaluating the perfor-
mance of specific systems, and from understanding online
human social behavior to demonstrating new possibilities
of organized social interactions. Yet a broad mathematical
foundation for social computing is yet to be established, with
a plethora of under-explored opportunities for mathematical
research to impact social computing.

In many fields or subfields, mathematical theories have
provided major contributions towards real-world applica-
tions. These contributions often come in form of mathe-
matical models to address the closely-related problems of
analysis—why do existing systems exhibit the outcomes they
do?—and design—how can systems be engineered to pro-
duce better outcomes? In computer science, mathematical
research led to the development of commonly used practical
machine learning methods such as boosting and support vec-
tor machines, public-key cryptography including the RSA
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protocol, widely used data structures such as splay trees and
techniques like locality-sensitive hashing, and more. Well
known examples in economics include the analysis and de-
sign of matching markets that have enabled Kidney Ex-
changes and have led to significant successes in public school
admissions and residence matching for doctors and hospi-
tals, the influence of auction theory on the design of the
FCC spectrum auctions, and the design and redesign of the
auctions used in online advertising markets.

As in other fields, there is great potential for mathe-
matical work to influence and shape the future of social
computing. There is a small literature using mathemati-
cal models to analyze and propose design recommendations
for social computing systems including crowdsourcing mar-
kets [7, 18, 24, 25, 30, 37], prediction markets [1, 2, 33],
human computation games [28, 39], and user-generated con-
tent sites [12, 15, 17, 29]; see, for example, Ghosh [14] for
a survey of one facet of this work. However, we are far
from having the systematic and principled understanding of
the advantages, limitations, and potentials of social comput-
ing required to match the impact on applications that has
occurred in other fields.

We note that social computing enjoys a close relationship
with another emerging discipline, which is computational
social science [19, 34].1 But it is also distinct from that
field. While human and social behavior, ability, and per-
formance are central to both, computational social science
focuses primarily on the use of modern technology, data, and
algorithms to understand and describe social interactions in
their “natural habitats.” In contrast, social computing (as
the name suggests) has a much more deliberate focus on en-
gineering systems that are hybrids of humans and machines,
which may often entail shaping collective behavior in unfa-
miliar environments. Nevertheless we anticipate a continued
close relationship and even blurring of the two efforts. As an
example, one should expect the vast theoretical and experi-
mental literature on the diffusion of influence and behavior
in social networks to be relevant to any effort to design a
social computing system which relies on such dynamics to
recruit and engage workers.

In June 2015, we brought together roughly 25 experts2

in related fields at a CCC-sponsored Visioning Workshop

1There are also clear connections to, and influence from,
older topics and models in the classical mathematical soci-
ology literature [6].
2Participant list and bios available at
http://bit.ly/1Vy9Ck7.
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on the Theoretical Foundations of Social Computing3 to
discuss the promise and challenges of establishing mathe-
matical foundations for social computing. This document
captures several of the key ideas discussed.

2. SUCCESS STORIES
We begin by describing some examples in which mathe-

matical research has led to innovations in social computing.

2.1 Crowdsourced Democracy
YouTube competes with Hollywood as an entertainment

channel, and also supplements Hollywood by acting as a dis-
tribution mechanism. Twitter has a similar relationship to
news media, and Coursera to universities. But Washington
has no such counterpart; there are no online alternatives for
making democratic decisions at large scale as a society. As
opposed to building consensus and compromise, public dis-
cussion boards often devolve into flame wars when dealing
with contentious socio-political issues. This motivates the
problem of designing systems in which crowds of hundreds,
perhaps millions, of individuals collaborate together to come
to consensus on difficult societal issues.

Mathematical research has recently led to new systems im-
plementing crowdsourced democracy [21]. This work builds
upon a body of research in social choice that examines how
to best take the preferences of multiple agents (human or
otherwise) and obtain from them a social decision or aggre-
gate social preference, typically accomplished through some
form of voting.4

Consider situations where a highly structured decision
must be made. Some examples are making budgets, assign-
ing water resources, and setting tax rates. Goel et al. [21]
make significant progress towards understanding the “right”
mechanisms for such problems. One promising candidate
is “Knapsack Voting.” Recall that in the knapsack prob-
lem, a subset of items with different values and weights
must be placed in a knapsack to maximize the total value
without exceeding the knapsack’s capacity. This captures
most budgeting processes — the set of chosen budget items
must fit under a spending limit, while maximizing societal
value. Goel et al. [21] prove that asking users to compare
projects in terms of “value for money” or asking them to
choose an entire budget results in provably better proper-
ties than using the more traditional approaches of approval
or rank-choice voting. Inspired by these mathematical re-
sults, Goel et al. designed a participatory budgeting plat-
form that is fast becoming the leader for such processes
in the U.S.5 For example, this platform was recently used
to decide how to spend $250,000 of infrastructure funds to
improve Long Beach (CA) Council District 9, and how to
allocate $2.4 million of Vallejo CA’s capital improvement
budget. Looking forward, it is an interesting and open re-
search challenge to understand if these algorithms and sys-
tems yield near-optimal aggregations of societal preferences,

3http://cra.org/ccc/events/theoretical-foundations-for-
social-computing/
4A significant research community concerns itself primarily
with computational social choice [4]: this area has particu-
lar promise for social computing because of the problems of
scale that are associated with group decision-making online,
such as in crowdsourced democracy.
5https://pbstanford.org/cambridge/approval

or decisions that are near-optimal in terms of overall societal
utility.

2.2 Automated Market Makers for Prediction
Markets

A prediction market is a financial market designed to ex-
tract and aggregate predictions from a crowd. In a typi-
cal prediction market, traders buy and sell securities with
payments that are contingent on the outcome of a future
event. For example, a security may yield a payment of $1 if
a Democrat wins the 2016 US Presidential election and $0
otherwise. A trader who believes that the true probability
of a Democrat winning the election is p maximizes his ex-
pected utility by purchasing the security if it is available at
a price less than $p and selling the security if it is available
at a price greater than $p. The market price of this security
is thought to reflect the traders’ collective belief about the
likelihood of a Democrat winning.

Prediction markets have been shown to produce forecasts
at least as accurate as other alternatives in a wide variety
of domains, including politics, business, disease surveillance,
entertainment, and beyond, and have been widely cited by
the press during recent elections. However, markets oper-
ated using traditional mechanisms like continuous double
auctions (similar to the stock market) often suffer from low
liquidity. Without liquidity, a market faces a chicken-and-
egg problem: potential traders are dissuaded from partici-
pating due to lack of counterparties, which contributes to
an even greater reduction in future trading opportunities.
Low liquidity can also lead to high price volatility and large
spreads, both of which cause the market price to yield a less
meaningful prediction.

To combat this problem, Hanson [23] proposed the idea of
operating markets using an automated market maker called
a market scoring rule. This market maker is an algorith-
mic agent that is always willing to buy or sell securities at
current market prices that depend on the history of trade.
Hanson’s ideas build on the extensive literature on proper
scoring rules [20], payment rules that elicit honest predic-
tions from agents. Market scoring rules ensure that the mar-
ket maker has bounded risk and that traders are unable to
engage in arbitrage. Because of these desirable properties,
Hanson’s market scoring rules have become the prediction
market implementation of choice used by companies includ-
ing Consensus Point, Inkling, and Augur, and large-scale
academic projects including SciCast (http://scicast.org) and
the Good Judgment Project [38].

Recently there has been interest in further tapping into
the informational efficiency of prediction markets and using
them to obtain accurate predictions on more fine-grained
events. For example, instead of viewing a Presidential elec-
tion as having two possible outcomes (Democrat wins or
Republican wins), we could view it as having 250 potential
outcomes, with each outcome specifying a winner in each
U.S. state. Traders could then trade securities on events
(combinations of outcomes) to profit on their unique knowl-
edge, such as whether or not the same candidate will win
in both Ohio and Florida, or whether or not the Repub-
lican candidate will win in at least one of Ohio, Pennsyl-
vania, and Virginia. Such a prediction market is called a
combinatorial prediction market. Unfortunately, due to the
difficulty of keeping prices logically consistent across large
outcome spaces, running market scoring rules off-the-shelf
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is computationally intractable for many natural examples of
combinatorial markets [5].

In search of pricing rules that are tractable and preserve
the logical relationships between security payoffs, Aber-
nethy, Chen, and Vaughan [1] proposed a general framework
for the design of efficient automated market makers over very
large or infinite outcome spaces. They took an axiomatic
approach, defining a set of formal mathematical properties
that correspond to economic properties that any reasonable
market should satisfy (such as “no arbitrage” and an “in-
formation incorporation” property) and fully characterized
the set of pricing mechanisms that satisfy these properties.
Then, using techniques from convex analysis, they provided
a method for designing specific market makers that satisfy
these properties. The framework enables formal reasoning of
trade-offs between different economic features of these mar-
ket makers as well as evaluating computational efficiency of
the pricing algorithms.

This framework is particularly exciting because it offers
a way to think about approximate pricing in combinatorial
markets when exact pricing is still intractable. Approximate
pricing for markets is challenging because approximation er-
rors may be exploited by traders to cause the market maker
to incur a large or even infinite loss. The framework of Aber-
nethy, Chen, and Vaughan [1] characterizes deviations from
exact pricing that won’t add additional cost to the mar-
ket maker. Building upon this understanding, Dud́ık et al.
[9] further developed a computationally tractable method to
run a large-scale prediction market that allows participants
to trade almost any contract they can define over an expo-
nentially large outcome space. This method is starting to
gain traction in industry where it has been used in the Pre-
dictWise election market [10] and previous and upcoming
iterations of the Microsoft Prediction Service.6

2.3 Fair Division for the Masses
Social computing systems can be used to help groups of

people make decisions about their day-to-day lives. One
particularly innovative example is Spliddit,7 a website that
provides tools that help groups of people achieve fair al-
locations. Spliddit currently offers tools to allocate rooms
and divide rent payments among roommates, split taxi fares
among passengers, assign credit in group projects, divide
sets of (divisible or indivisible) goods among recipients, or
split up tasks among collaborators. It has been featured in
the New York Times8 and had tens of thousands of users as
of 2014 [22].

Spliddit’s website boasts “indisputable fairness guaran-
tees.” Indeed, each of the division mechanisms employed
on the site stems from the body of research on (computa-
tional) fair division [36] and comes with provable mathemat-
ical guarantees. For example, the algorithm used for room
assignment and rent splitting relies on the fact that there
always exists an assignment of rooms and a corresponding
set of prices that is envy-free: every roommate prefers the
room he is assigned to any other room given the prices. Each
roommate submits her own value for each of the rooms, un-
der the constraint that the total value of all rooms matches
the total rent for the apartment; viewed another way, each
roommate is essentially submitting a proposed set of prices

6http://prediction.microsoft.com/
7http://www.spliddit.org/
8http://nyti.ms/1o0TUtO

for each room such that she would be equally happy obtain-
ing any room at the specified price. The algorithm then
maximizes the minimum utility (value of room minus price)
of any roommate subject to the constraint that envy-freeness
is satisfied. The solution is also Pareto efficient, meaning
there is no other allocation that would increase the utility
of any roommate without decreasing the utility of another.

As another example, the credit assignment problem is
solved using an algorithm of de Clippel et al. [8]. Each
collaborator reports the relative portion of credit that he
believes should be assigned to each of the other collabora-
tors. For example, on a project with four collaborators, col-
laborator A might report that collaborators B and C should
receive equal credit while D should receive twice as much
credit. The algorithm takes these reports as input and pro-
duces a credit assignment that is impartial, meaning that an
individual’s share of credit is independent of his own report,
and consensual, meaning that if there is a division of credit
that agrees with all collaborators’ reports then this division
is chosen. While these conditions may not sound restrictive,
de Clippel et al. [8] show that they are not simultaneously
achievable with three collaborators. Their algorithm there-
fore requires at least four.

In addition to providing a useful set of tools, part of Splid-
dit’s mission is to“communicate to the public the beauty and
value of theoretical research in computer science, mathemat-
ics, and economics, from an unusual perspective.” Indeed,
the project has inspired some members of the public to take
an interest in algorithms with provable fairness properties.
As one example, a representative of one of the largest school
districts in California approached the Spliddit team about a
problem he was tasked with solving: fairly allocating unused
classrooms in public schools to the district’s charter schools.
This led the Spliddit team, in collaboration with the Cali-
fornia school district, to design a practical new approach to
classroom allocation that guarantees envy-freeness as well
as several other desirable properties [32].

3. A CHALLENGE PROBLEM: THE
CROWDSOURCING COMPILER

A concrete challenge problem for future research in so-
cial computing is what might be called the “Crowdsourc-
ing Compiler”:9 the development of high-level programming
languages for specifying large-scale, distributed tasks whose
solution requires combining traditional computational and
networking resources with volunteer (or paid) human intel-
ligence and contributions. The hypothetical compiler would
translate an abstract program into a more detailed organi-
zational plan for machines and people to jointly carry out
the desired task. In the same way that today’s Java pro-
grammer is relieved of low-level, machine-specific decisions
(such as which data to keep in fast registers, and which
in main memory or disk), the future crowdsourcing pro-
grammer would specify the goals of their system, and leave
many of the implementation details to the Crowdsourcing
Compiler. Such details might include which components of
the task are best carried out by machine and which by hu-
man volunteers; whether the human volunteers should be in-
centivized by payment, recognition, or entertainment; how
their contributions should be combined to solve the over-
all task; and so on. While a fully general Crowdsourcing

9See http://bit.ly/20juYEX and http://bit.ly/1nIyc3P.
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Compiler might well be unattainable, significant progress
towards it would imply a much deeper scientific understand-
ing of crowdsourcing than we currently have, which in turn
should have great engineering benefits. Noteworthy research
efforts which can be viewed as steps on the path to the
Crowdsourcing Compiler include Emery Berger’s AutoMan
Project (http://emeryberger.com/research/automan/) [3],
as well as both academic and commercial efforts to auto-
mate workflow in crowdsourcing and social computing sys-
tems (see e.g., http://groups.csail.mit.edu/uid/turkit/ and
http://www.crowdflower.com/).

We note that the organizational schemes in most of the
successful crowdsourcing examples to date share much in
common. The tasks to be performed (e.g., building an on-
line encyclopedia, labeling images for their content, creating
a network of website bookmark labels, finding surveillance
balloons) are obviously parallelizable, and furthermore the
basic unit of human contribution required is extremely small
(fix some punctuation, label an image, etc.). Furthermore,
there is usually very little coordination required between
the contributions. The presence of these commonalities is
a source of optimism for the Crowdsourcing Compiler —
so far, there seems to be some shared structure to success-
ful crowdsourcing that the compiler might codify. But are
such commonalities present because they somehow delineate
fundamental limitations on successful crowdsourcing — or
simply because this is the “low-hanging fruit?”

As of today, the Crowdsourcing Compiler is clearly a“blue
sky”proposal meant more to delineate an ambitious research
agenda for social computation than to serve as a guide to
short-term steps. But we believe that such an agenda would
both need and drive research on theoretical foundations.
First steps toward developing the mathematical foundations
of a Crowdsourcing Compiler include formally addressing
the following questions:

• For a given set of assumptions about the volunteer
force, and given the nature of the task, what is the best
scheme for organizing the volunteers and their contri-
butions? For instance, is it a “flat” scheme where all
contributors are equal and their contributions are com-
bined in some kind of majority vote fashion? Or is it
more hierarchical, with proven and expert contributors
given higher weight and harder subproblems? Which
of these (or other) schemes should be used under what
assumptions on the nature of the task and what as-
sumptions on the volunteers?

• How can we design crowdsourced systems for solving
tasks that are much more challenging and less “trans-
actional” than what we currently see in the field —
for instance, complex problems where there are strong
constraints and interdependencies between the contri-
butions of different volunteers? Behavioral research
in recent years has shown that groups of humans can
indeed excel on such tasks [31], but we are far from
understanding when and why.

Finally, we note that while the comparison to traditional
compilers might be a useful guide and metaphor, a crowd-
sourcing analogue would have to face a variety of issues that
simply do not arise with standard hardware and software. In
addition to the aforementioned challenges of deciding how
to organize and incentivize human contributions, there may

also be the potential for malicious or deceptive behavior by
workers, and the need for error correction of crowd work
(which is currently largely handled by redundancy and vot-
ing techniques).

4. CHALLENGES TO OVERCOME
We have argued that mathematical research has the po-

tential to make great contributions to social computing.
However, before this potential is fully realized, there are
several challenges that must be addressed.

4.1 Blending Mathematical and Experimen-
tal Research

Mathematical and experimental research are complemen-
tary and both are needed to develop relevant mathematical
foundations for social computing. The strengths of mathe-
matical work include:

1. Mathematical modeling and analysis can be used to
cleanly formulate and answer many questions about
system behavior without requiring that we build a
complete system, providing us with a tool to evalu-
ate the impact of design decisions before committing
to any particular design. For example, such models
can provide guidance on how to increase participation
(e.g., comparing a leaderboard to badges [16, 27]), pre-
dict whether a social computing system will achieve
critical mass, and perhaps understand how the behav-
ior of groups of users change as the system scales.

2. Mathematical guarantees are desirable for properties
like user privacy (which can be obtained, for example,
using techniques from the extensive and growing lit-
erature on differential privacy [11]), correctness of a
system’s output, or the scalability of a social comput-
ing system.

3. Theoretical work in computer science provides tools for
designing and analyzing new algorithms that could lie
at the heart of social computing applications, answer-
ing questions like how to aggregate noisy and unstruc-
tured estimates or information from crowds [25, 30],
how to optimally divide a community into subgroups,
or how to bring people together in moments of spare
time to achieve a common goal.

4. Mathematical models can be used to explore counter-
factual analysis, something that is notoriously difficult
to do through experiments alone.

Needless to say, mathematical modeling should not and
cannot replace experimental work. A mathematical theory
can only be truly tested through experiments, and discrep-
ancies between the theory and experimental results provide
guidance about how to revise the theory. For example, the
ability of mathematical models to make valuable predictions
about system behavior depends on an accurate model of sys-
tem users, which is generally best developed through exper-
imental work.

4.2 Learning from the Social Sciences
Computer scientists cannot develop the mathematical

foundations of social computing in isolation. Social comput-
ing systems are fundamentally social. These systems cannot
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be properly modeled or analyzed without accounting for the
behavior of their human components. Much of the litera-
ture thus far uses standard models of economic agents and
corresponding assumptions about agent preferences, but a
growing literature based on experimental work on online
platforms suggests that human behavior in several online
settings might deviate from these models [26, 35, 40], and
these deviations can have significant consequences for how
to optimally design social computing systems [13, 16].

In order for mathematical foundations to provide useful
practical results, it is necessary to base it on models that bet-
ter reflect human behavior. This is most effectively achieved
via a dialog between theoretical and experimental and em-
pirical research, with studies of human behavior informing
mathematical modeling choices, as well as mathematical re-
sults suggesting the most important agent characteristics
to understand via experimental research. It will be impor-
tant to understand and incorporate relevant research from
psychology, economics, sociology, and other fields. For ex-
ample, behavioral economics and psychology provide insight
into how humans respond to incentives.

4.3 Generalization
Most of the existing mathematical work on social comput-

ing focuses on a single application. What does the research
on prediction market design tell us about recommendation
systems or citizen science? Models will have the most po-
tential for impact if they incorporate reusable components,
allowing results to generalize to many systems. (This is one
motivation for the Crowdsourcing Compiler of Section 3.)

A related issue is the lack of consensus and understanding
of the “core social computing problems,” or even if such a set
of core problems exists. Mathematical theories are typically
developed with one or more such core problems in mind.
Such problems should capture challenges that span a wide
range of applications and be robust to small changes in the
applications to be sure that they are capturing something
“real.” Clearly, the identification of such problems requires
a dialog between practitioners building real systems and the-
oreticians to identify the most pressing problems requiring
mathematical study.

4.4 Transparency, Interpretability, and Ethi-
cal Implications

One final challenge to overcome is the potential need to
make social computing algorithms and models transparent
and interpretable to the users of social computing systems.
Users are becoming increasingly sophisticated and are aware
that the algorithms employed online impact both their day-
to-day user experience and their privacy. When faced with
the output of an algorithm, many will question where this
output came from and why. It is already difficult to explain
to users why complex probabilistic algorithms and models
produce the results that they do, and this will only become
more difficult as algorithms integrate human behavior to a
larger extent.

The issue of algorithmic transparency is often tied to ethi-
cal concerns such as discrimination and fairness. Examining
and avoiding the unintended consequences of opaque deci-
sions made by algorithms is a topic that has been gaining
interest in the machine learning and big data communities.10

10See, for example, the series of recent workshops on Fair-

Such concerns will undoubtedly need to be addressed in the
context of social computing as well.
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