
Optimal Cost-Sharing Mechanisms for Steiner

Forest Problems

Shuchi Chawla1, Tim Roughgarden2, and Mukund Sundararajan2

1 University of Wisconsin-Madison, Department of Computer Science, 210 W.
Dayton Street, Madison, WI 53706, USA

2 Stanford University, Department of Computer Science, 353 Serra Mall, Stanford,
CA 94305, USA

Abstract. Könemann, Leonardi, and Schäfer [14] gave a 2-budget-bal-
anced and groupstrategyproof mechanism for Steiner forest cost-sharing
problems. We prove that this mechanism also achieves an O(log2

k)-
approximation of the social cost, where k is the number of players. As
a consequence, the KLS mechanism has the smallest-possible worst-case
efficiency loss, up to constant factors, among all O(1)-budget-balanced
Moulin mechanisms for such cost functions. We also extend our results
to a more general network design problem.

1 Introduction

We study the design and analysis of cost-sharing mechanisms for fundamental
network design problems. A cost-sharing mechanism is a protocol that collects
bids for a service or good from potential users (players), chooses a subset of
players to receive the service and a feasible way of servicing them, and determines
prices to charge the chosen players. The mechanism incurs a subset-dependent
cost C(S) defined by a known cost function C. In this paper, we are interested
in problems where players seek connectivity between a group of vertices, and
where the cost C(S) corresponds to the cost of providing such connectivity to
the players in the set S.

A cost-sharing mechanism can be viewed as an auction in which any number
of players can “win”, but in which the cost incurred by the auctioneer varies
with the set of winners. The canonical problem of auctioning off a single good
can be viewed as the special case in which the cost C(S) is 0 if |S| ≤ 1 and is
+∞ otherwise.

With more general cost functions, designing a mechanism requires choosing
between several desirable but incompatible properties. As is standard, we in-
sist on incentive-compatibility, meaning that players are motivated to bid their
true private value vi for receiving the service. We also require budget-balance,
meaning that the mechanism recovers the incurred cost with the prices charged
to the chosen players. Finally, we are interested in the social objective function
of efficiency. Efficiency states that a set S should be chosen that trades off the
cost C(S) incurred and the valuations of the players in S in an optimal way.

2

Unfortunately, these three properties cannot be simultaneously achieved, even
in very simple settings [8, 21].

This impossibility result motivated two distinct approaches to designing cost-
sharing mechanisms. The first approach, taken by VCG mechanisms (see e.g. [17,
19]), ignores budget-balance. These mechanisms are optimally efficient and in-
centive compatible. They are typically not approximately budget-balanced for
any reasonable approximation factor (see e.g. [5]).

The second approach, adopted in this paper, is to insist on incentive-compat-
ibility and budget-balance, while regarding efficiency as a secondary objective.
Moulin [18] introduced a class of mechanisms of this type. Researchers have
developed approximately budget-balanced Moulin mechanisms for a number of
different combinatorial optimization problems, including fixed-tree multicast [2,
5, 6]; submodular cost-sharing [18, 19]; Steiner tree [11–13]; Steiner forest [14, 15];
facility location [16, 20]; and rent-or-buy network design [9, 20]. The approach of
Moulin [18] is the only known general technique for designing budget-balanced
mechanisms with non-trivial costs.

Since Moulin mechanisms prioritize budget-balance over efficiency, nearly all
previous papers that design Moulin mechanisms do not address the efficiency
of the proposed mechanisms. Nevertheless, very recent work [23] shows that it
is possible to discuss and compare the efficiency of Moulin mechanisms. Specifi-
cally, Roughgarden and Sundararajan [23] measured efficiency via the social cost,
where the social cost of a set S is defined as the sum of the incurred service cost
and the excluded valuations: C(S) +

∑
i/∈S vi. This objective function is similar

to the “prize-collecting” objectives that are commonly studied in approximation
algorithms (see e.g. [7]). We call a mechanism α-approximate if it always outputs
a solution with social cost at most an α factor times that of an optimal solution.

Roughgarden and Sundararajan [23] developed a framework to quantify the
extent to which a Moulin mechanism minimizes the social cost. They applied
this framework in [22, 23] to well-known mechanisms for submodular [19], facility
location [20], Steiner tree [11], and single-sink rent-or-buy [9] cost functions. In
particular, all of these mechanisms are both O(polylog(k))-approximate, where
k is the number of players, and are optimal (up to constant factors) among all
Moulin mechanisms for the corresponding sets of cost functions.

A consequence of the main result in [23] is that only β-budget-balanced
Moulin mechanisms can be β-approximate. The problem of designing Moulin
mechanisms with good (say, polylogarithmic) budget-balance is itself highly non-
trivial, and is provably impossible for several natural classes of cost functions [10].
Prior work [22, 23] resolved the approximate efficiency of all known Moulin
mechanisms with good budget-balance save one: the elegant 2-budget-balanced
Moulin mechanism for Steiner forest cost-sharing problems due to Könemann,
Leonardi, and Schäfer [14]. We call this the KLS mechanism.

There are two reasons that analyzing the approximate efficiency of the KLS
mechanism is technically challenging. First, Steiner forest cost functions, de-
fined formally in Section 2, seem more complex than those treated in previ-
ous works [22, 23]. Indeed, the problem of designing an O(1)-budget balanced

3

Moulin mechanism for such functions was a well-known open question for sev-
eral years prior to the invention of the KLS mechanism. Second, the KLS mech-
anism itself possesses properties that make the analytic framework in [23] dif-
ficult to apply. In fact, prior to the present work, no non-trivial bound on the
approximate efficiency of the KLS mechanism was known even when the input
is restricted to Steiner tree cost functions. On the other hand, the Steiner tree
cost-sharing mechanism due to Jain and Vazirani [11] is known to be O(log2 k)-
approximate [23]. The analysis of the Jain-Vazirani mechanism does not obvi-
ously carry over to the KLS mechanism (specialized to Steiner tree cost func-
tions) since the latter mechanism, intuitively, charges players higher prices and
therefore more aggressively discards them from the set S of winners. See Sec-
tion 3.1 for a more technical discussion of this point.

In this paper, we overcome these difficulties and prove a tight upper bound
on the approximate efficiency of the KLS mechanism. Specifically, in Section 3
we prove that the mechanism is O(log2 k)-approximate, where k is the number
of players. Previous work [22] shows that, even for the special case of Steiner
tree cost functions, every O(1)-budget-balanced Moulin mechanism is Ω(log2 k)-
approximate. Thus the KLS mechanism has the smallest-possible worst-case effi-
ciency loss, up to constant factors, among all such mechanisms for Steiner forest
cost functions. We also extend our results to a more general network design
problem (Section 4).

2 Preliminaries

Cost-Sharing Mechanisms. We consider cost functions C that assign a cost C(S)
to every subset S of a universe U of players and are defined implicitly via in-
stances of network design problems. We also assume that every player i ∈ U has
a private, nonnegative valuation vi for service. A generalized Steiner tree (GST)
cost function is defined by a graph G = (V, E), where each edge e ∈ E possesses
a nonnegative cost ce, and by a set U of players, where each player i ∈ U is
identified with a subset Ai ⊆ V of vertices called terminals. For a subset S ⊆ U
of players, the cost C(S) is defined as the minimum cost of a subgraph of G
that, for each i ∈ S, connects all of the vertices in Ai. A Steiner forest (SF) cost
function is a special case of a GST function in which every group Ai contains
only two terminals, a source si and a sink ti.

A cost-sharing mechanism collects a nonnegative bid bi from each player
i ∈ U , selects a set S ⊆ U of players, and charges every player i a price pi. The
mechanisms we consider also produce a feasible solution to the network design
problem induced by the served set S, which has cost C ′(S) that in general is
larger than the optimal cost C(S). (Of course, evaluating C(S) exactly is NP-
hard.) We only allow mechanisms that are “individually rational” in the sense
that pi = 0 for players i /∈ S and pi ≤ bi for players i ∈ S. We also require that all
prices are nonnegative (“no positive transfers”). As is standard, we assume that
players have quasilinear utilities, meaning that each player i aims to maximize
ui(S, pi) = vixi − pi, where xi = 1 if i ∈ S and xi = 0 if i /∈ S.

4

Our incentive-compatibility constraint is the well-known strategyproofness
condition, which intuitively requires that a player cannot gain from misreporting
its bid. Formally, a mechanism is strategyproof (SP) if for every player i, every bid
vector b with bi = vi, and every bid vector b′ with bj = b′j for all j 6= i, ui(S, pi) ≥
ui(S

′, p′i), where (S, p) and (S′, p′) denote the outputs of the mechanism for the
bid vectors b and b′, respectively.

For a parameter β ≥ 1, a mechanism is β-budget balanced if C(S)/β ≤∑
i∈S pi ≤ C(S) for every outcome (S, p) of the mechanism. For a mechanism

that outputs a feasible solution with cost C ′(S) ≥ C(S), we require the stronger
condition that C ′(S)/β ≤

∑
i∈S pi ≤ C(S). In particular, this requirement im-

plies that the feasible solution produced by the mechanism has cost at most a β
factor times that of optimal.

As discussed in the Introduction, we measure efficiency using the objective
of social cost minimization. A cost-sharing mechanism is α-approximate if, as-
suming truthful bids, it always produces a solution with social cost at most an
α factor times that of an optimal solution. Here, the social cost incurred by the
mechanism is defined as the service cost C ′(S) of the feasible solution it produces
for the network design instance corresponding to S, plus the sum

∑
i/∈S vi of the

excluded valuations. Such a mechanism has two sources of inefficiency: first, it
might choose a suboptimal set S of players to serve; second, it might produce a
suboptimal solution to the network design instance induced by S.

Moulin Mechanisms and Cross-Monotonic Cost-Sharing Methods. Next we re-
view Moulin mechanisms, a class of cost-sharing mechanisms that, for many cost
functions, are SP, approximately budget-balanced, and approximately efficient.
Such mechanisms are based on cost sharing methods, defined next.

A cost-sharing method χ is a function that assigns a non-negative cost share
χ(i, S) for every subset S ⊆ U of players and every player i ∈ S. A cost-
sharing method is β-budget balanced for a cost function C and a parameter β ≥ 1
if it always recovers β fraction of the cost: C(S)/β ≤

∑
i∈S χ(i, S) ≤ C(S).

We consider cost-sharing methods that, given a set S, produce both the cost
shares χ(i, S) for all i ∈ S and also a feasible solution for the network design
problem induced by S. As above, we use the stronger condition C ′(S)/β ≤∑

i∈S χ(i, S) ≤ C(S) for such methods, where C ′(S) is the cost of the produced
feasible solution. A cost-sharing method is cross-monotonic if adding players to
a set S only decreases the cost shares of players: for all S ⊆ X ⊆ U and i ∈ S,
χ(i, S) ≥ χ(i, X).

A cost-sharing method χ for C defines the following Moulin mechanism Mχ

for C. First, collect a bid bi for each player i. Initialize the set S to all of U and
invoke the cost-sharing method χ to define a feasible solution to the network
design problem induced by S and a price pi = χ(i, S) for each player i. If pi ≤ bi

for all i ∈ S, then halt, output the set S, the corresponding network design
solution, and charge prices p. If pi > bi for some player i ∈ S, then remove an
arbitrary such player from the set S and iterate. A Moulin mechanism based
on a cross-monotonic cost-sharing method thus simulates an iterative ascending
auction, with the method χ suggesting prices for the remaining players at each

5

iteration. Note that if χ produces a feasible solution in polynomial time, then
so does Mχ. Also, Mχ clearly inherits the budget-balance factor of χ. Finally,
Moulin [18] proved the following.

Theorem 1 ([18]). If χ is a cross-monotonic cost-sharing method, then the
corresponding Moulin mechanism Mχ is strategyproof.

Theorem 1 reduces the problem of designing an SP3, β-budget-balanced mech-
anism to that of designing a cross-monotonic, β-budget-balanced cost-sharing
method.

Summability and Approximate Efficiency. Roughgarden and Sundararajan [23]
showed that the approximate efficiency of a Moulin mechanism is completely
controlled by its budget-balance and one additional parameter of its underlying
cost-sharing method. We define this parameter next.

Definition 1 ([23]). Let C and χ be a cost function and a cost-sharing method,
respectively, defined on a common universe U of players. The method χ is α-
summable for C if

|S|∑

`=1

χ(i`, S`) ≤ α · C(S)

for every ordering σ of U and every set S ⊆ U , where S` and i` denote the set of
the first ` players of S and the `th player of S (with respect to σ), respectively.

We next summarize the main result in [23].

Theorem 2 ([23]). Let U be a universe of players and C a nondecreasing cost
function on U with C(∅) = 0. Let M be a Moulin mechanism for C with un-
derlying cost-sharing method χ. Let α ≥ 0 and β ≥ 1 be the smallest numbers
such that χ is α-summable and β-budget-balanced. Then the mechanism M is
(α + β)-approximate and no better than max{α, β}-approximate.

In particular, an O(1)-budget-balanced Moulin mechanism is Θ(α)-approximate
if and only if the underlying cost-sharing method is Θ(α)-summable.

The KLS cost-sharing method. Könemann, Leonardi and Schäfer [14] devised
cross-monotonic, 2-budget-balanced cost-sharing methods for all Steiner forest
cost functions. The cost-sharing method is based on a variant of the primal-dual
method. By Theorem 1, this yields 2-budget-balanced and GSP mechanisms for
all such functions. Due to space constraints, we refer the reader to [14] for a
description of the KLS cost-sharing method; its details are important primarily
for Sections 3.3 and 4.

3 Moulin mechanims satisfy a stronger notion of incentive compatibility called group-
strategyproofness (GSP), which is a form of collusion resistance. Almost all known
GSP cost-sharing mechanisms are Moulin mechanisms (see [10, 18, 19]).

6

3 The Efficiency of the KLS Mechanism

We now analyze the efficiency of the KLS mechanism. Our main result is the
following.

Theorem 3. For every Steiner forest cost function with k players, the KLS
cost-sharing method is O(log2 k)-summable.

Since the KLS cost-sharing method is 2-budget-balanced, Theorems 2 and 3 im-
mediately give a guarantee on the approximate efficiency of the KLS mechanism.

Corollary 1. For every Steiner forest cost function with k players, the KLS
mechanism is O(log2 k)-approximate.

Since every O(1)-budget-balanced Moulin mechanism for Steiner tree cost func-
tions is Ω(log2 k)-approximate [22], the KLS mechanism is an optimal mecha-
nism of this type (up to constant factors).

3.1 Overview of the Proof of Theorem 3

This section provides an overview of our analysis. By the definition of summabil-
ity (Definition 1), proving Theorem 3 requires analyzing the following procedure.
Given an arbitrary Steiner forest instance and an arbitrary ordering of the play-
ers (source-sink pairs), we consider adding the players to the instance one-by-one,
according to the given ordering. Each time we add a new player, we recompute
the KLS cost shares using the KLS primal-dual algorithm and consider the cost
share of the most recently added player. The key question is: by how much can
the sum of these successive cost shares exceed the cost of servicing all of the
players?

Our analysis proceeds in two steps. The first step is motivated by the difficulty
in directly bounding the above successive cost shares in a general network. The
idea of this step is to replace the given network by a forest with cost at most
an O(log k) times that of an optimal Steiner forest. In addition, to facilitate our
charging argument in the second step, we require that each tree of this forest
be an ultrametric—i.e. all root-leaf paths have equal length. While this goal is
reminiscent of probabilistic tree embeddings (see e.g. [3, 4]), we cannot apply such
an embedding as a black box. The reason is that our charging argument requires
structure beyond the low distortion guarantee—it also needs the distances in the
ultrametric to be tightly coupled with the dual growth process used to define
the KLS cost-shares.

In the second step, we demonstrate how to charge the k successive KLS cost
shares to the ultrametrics constructed in the first step. Loosely speaking, we
show how subtrees in each ultrametric correspond to active components during
the execution of the primal-dual algorithm that defines the KLS cost shares. Our
charging scheme charges each point of each ultrametric O(log k) times, proving
an O(log2 k) bound on the summability of the KLS cost-sharing method.

While portions of this argument are similar to that used in [23] to upper
bound the summability of the Jain-Vazirani Steiner tree cost-sharing method [11],

7

the refined ultrametric structure and the charging argument in this paper are
new. One reason we require the ultrametric structure is that the primal-dual
algorithm underlying the KLS mechanism determines cost shares using fixed
“death times”, rather than via the component structure in the dual growth pro-
cess. While crucial for cross-monotonicity, this property can cause a terminal to
accumulate a cost share beyond the point at which it is connected to its mate,
and it is not obvious how to bound this additional accumulation. In fact, we
can exhibit an example with k players for which the summability of the KLS
method is an Ω(log k) factor times larger than that of the Jain-Vazirani method.
Nonetheless, we prove in this section that the KLS method is always O(log2 k)-
summable, matching the (tight) worst-case bound for the Jain-Vazirani method.

3.2 Building the Forest

In the first step of our proof of Theorem 3, we define a procedure with the
following properties. The procedure takes as input a Steiner forest instance
G = (V, E) with edge costs and an (adversarial) ordering σ of the source-sink
pairs (s1, t1), . . . , (sk, tk). It constructs a forest F , defined on the terminals, that
has cost O(log k) times that of a minimum-cost Steiner forest, as well as other
desirable structure. While the following description will be algorithmic, we em-
phasize that this construction is purely for the purposes of analyzing the summa-
bility of the KLS cost-sharing method.

Consider an optimal solution to the given Steiner forest instance. Our forest
F will have one tree for each connected component of this optimal solution.
We will construct these trees independently of each other, so we can restrict our
description to a single component T ∗ of the optimal Steiner forest. Let A∗ denote
the terminals spanned by T ∗. The vertex set of the tree T that we construct will
contain all the terminals in A∗ as well as some auxilliary vertices.

We now describe the construction of T . The ordering σ = (s1, t1), . . . , (sk, tk)
on source-sink pairs induces an ordering s1, t1, s2, t2, . . . , sk, tk on the terminals
and also an ordering of A∗. We construct T by adding terminals in A∗ to it
in this order. When a terminal is considered, we attach it to the existing tree
and endow it with a radius. The ball of a terminal x with radius r is defined
as the terminals of A∗ at distance at most r from x in the given graph G. We
begin with the first terminal (say x1) of A∗, which is given an infinite radius.
For technical reasons, we introduce an auxiliary root x0 and create an edge e0

between x0 and x1 of length Dmax, where Dmax is half the largest distance in
G between two terminals of A∗. We call this edge e0 the backbone edge.

Now consider some subsequent terminal x. Among all of the previously added
terminals whose ball contains x, we define the terminal y with the minimum
radius to be the parent of x and write p(x) = y. If y has finite radius—i.e., is
not the first terminal of A∗ with respect to σ—then we define x’s radius rx to
be half of its parent’s radius. Otherwise, we define the radius rx to be half of the
shortest-path distance between x and y in G. To attach x to the tree T , consider
the path from y to x0 in T . We connect x to the point along this path at a
distance rx from y, possibly creating a new internal node. The backback edge

8

and the definition of Dmax ensure that this is always possible. Call this point
v(x). The length of the edge between v(x) and x is defined to be rx. We assign
this new node v(x) a label with value y; this label plays a role in our subsequent
proofs.

We next prove several facts about this construction. We begin with an easy
lemma.

Lemma 1. The backbone edge e0 has length at most c(T ∗), where T ∗ is the
component of the optimal solution that spans A∗.

Using this lemma and arguments similar to those in [23] for a related tree
construction, we can bound the sum of edge costs in T ∗.

Lemma 2. The sum of the costs of the edges in T is O(log k) · c(T ∗).

We next study distances between terminals in the tree T . We begin by noting
that our construction does indeed produce an ultrametric.

Lemma 3. The tree T is an ultrametric, with all root-leaf paths having length
Dmax. Moreover, the leaves of T are in bijective correspondence with the termi-
nals A∗.

Lemma 3 follows from an easy induction. In particular, when a new terminal x
is added to the tree T , the distance from v(x) to x equals the distance from v(x)
to p(x).

For every two terminals x, y in A∗, let dT (x, y) and dG(x, y) denote the
distances between x and y in the tree T and in the graph G, respectively. The
next lemma follows immediately from the construction.

Lemma 4. For every terminal x ∈ A∗ with parent p(x), dT (x, p(x)) = 2rx =
rp(x) ≥ dG(x, p(x)).

We next extend Lemma 4 to every pair x, y ∈ A∗ of terminals x, y. The idea
is =to consider a walk Wxy between x and y in T and relate the length of this
walk to both dT (x, y) and dG(x, y).

Precisely, fix x, y ∈ A∗ and consider the (unique) path Pxy between x and y
in the tree T . The length of this path is dT (x, y). To construct the walk Wxy,
consider the sequence Sxy of vertices that the path Pxy visits; apart from x
and y, all of these are internal nodes of T . Obtain a sequence S ′

xy of terminals
from Sxy by replacing the internal nodes of Sxy by their label values (terminals)
and then removing duplicates. Obtain the walk Wxy by visiting the terminal
nodes in S′

xy in order, along the unique paths in T that connect nodes. The walk
Wxy contains Pxy as a subgraph, and may be decomposed into Pxy and a set of
circuits, each of which starts and ends at an internal node of Pxy, visiting the
terminal node corresponding to the label of the internal node along the way.

Let `xy denote the length of this walk. We prove the following three lemmas,
with the third an immediate consequence of the first two.

Lemma 5. For every pair x, y ∈ A∗ of terminals in T , `x,y ≥ dG(x, y).

9

Lemma 6. For every pair x, y ∈ A∗ of terminals in T , dT (x, y) ≥ `x,y/5.

Lemma 7. For every pair x, y ∈ A∗ of terminals in T , dT (x, y) ≥ dG(x, y)/5.

Lemma 5 follows from Lemma 4 and the fact that consecutive nodes in S ′
xy

share a parent-child relationship. The idea of the proof of Lemma 6 is as follows.
Consider one circuit of Wxy rooted at the internal point v(z) and visiting the
terminal p(z). The length of the circuit is at most 2rz, while the length of the
segment of Pxy immediately preceding v(z) is at least rz/2 (rz minus the radius
of any of z′s children). Therefore, we can charge the length of every circuit to 4
times the section of Pxy that immediately precedes it in the walk Wxy.

For technical reasons, we multiply all of the edge costs of T by 10, yielding
the tree T ′. The following is just a restatement of Lemmas 2, 3, and 7.

Lemma 8. T ′ satisfies the following properties:

(a) The cost of T ′ is O(log k) · c(T ∗).
(b) T ′ is an ultrametric, with the terminals of A∗ appearing only as leaves.
(c) For every pair x, y ∈ A∗ in T ′, dG(x, y) ≤ 1

2dT ′(x, y).

3.3 The Charging Argument

We are now ready to bound the summability of the KLS cost-share. Our charg-
ing argument will proceed independently for each ultrametric constructed in
Sections 3.2; for most of this section, we will fix one such ultrametric T , span-
ning a set A∗ of terminals.

Let x` and A` denote the `th terminal and the first ` terminals of A∗, re-
spectively, with respect to the ordering induced by σ.

We aim to charge the KLS cost share χKLS(x`, A`) of a terminal x` ∈ A∗

to points of the tree T . (A technical detail: since matched pairs of terminals
appear consecutively in the ordering induced by σ, the set A` contains only
matched pairs of terminals, plus possibly an orphaned source si. In either case,
χKLS(x`, A`) denotes the KLS cost share assigned to the terminal x` in the
Steiner forest instance induced by all of the players with at least one terminal
in the set A`.)

The charging proceeds as follows. Let P` be the unique path in T from
x` to x0, and consider the primal-dual algorithm that assigns the KLS cost
share χKLS(x`, A`). At each moment in time τ up to the death time of x`, the
terminal’s cost share increases at a positive rate, equal to the inverse of the
number of active terminals in x`’s component at time τ . For each such time τ ,
we charge this (marginal) increment in x`’s cost-share to the point g`(τ) which
is at distance τ from x` along the path P`.

Since every leaf-root path of T has length at least Dmax (Lemma 8(b))—half
of the largest distance between two terminals of A∗—and since Dmax is at least
the death time of every terminal of A∗, this procedure fully charges the sum∑

` χKLS(x`, A`) of the KLS cost shares to T .

10

We now claim that for every point g of the tree T , the sum of the (marginal)
charges to g by the terminals of A∗ is only O(log k). Fix a point g of T . Only
terminals in the subtree of T rooted at g charge part of their cost share to g. By
the ultrametric property (Lemma 8(b)), all of these terminals are equidistant
from the point g in T ; let this common distance be τg . Such a terminal charges
part of its cost share to g if and only if its death time is at least τg ; let B denote
these terminals.

Using Lemma 8(c) we now show that, for a terminal x` ∈ B, at time τg in the
run of the primal-dual algorithm that defines the KLS cost share χKLS(x`, A`),
the component containing x` also contains all of the terminals of B ∩ A`.

Lemma 9. If x, x′ ∈ B, then dG(x, x′) ≤ τg.

Lemma 10. Suppose x` ∈ B and x ∈ A` ∩ B. Then at time τg in the run
of the primal-dual algorithm that defines the KLS cost share χKLS(x`, A`), the
terminal x is active and lies in the same component as x`.

Since the KLS cost-sharing method splits the increase in value of an active
dual variable equally among the active terminals contained in the corresponding
component, Lemma 10 implies that the marginal charge to the point g by the
terminal x` ∈ B is at most 1/|B ∩ A`|. Summing over the contributions of the
terminals in B, we obtain the following.

Lemma 11. For every point g of T , the total marginal charge to g is at most
H|B|, where Hj =

∑
i≤j 1/i denotes the jth Harmonic number.

Theorem 3 now follows easily from Lemmas 8(a) and 11.

4 A Generalized Steiner Tree Mechanism

We now briefly consider an extension of the Steiner forest problem, deferring
a detailed discussion to the full version. We consider a problem in which each
player i controls a group Ai of terminals, and is interested in connecting all of
these terminals together. This problem is also called the generalized Steiner tree
(GST) problem [1]. Let k and n denote the number of terminal groups (players)
and terminals, respectively. The Steiner forest problem is the special case where
each group contains only two terminals.

Consider the following naive reduction to the Steiner forest problem. For each
group of terminals corresponding to a player, nominate one of these terminals
as a leader. Create terminal pairs by pairing each terminal in the group with
the leader. Invoke the KLS cost-sharing method on these terminal pairs, and
define the cost share of a player to be the sum of the cost shares assigned
to its corresponding terminal pairs. Cross-monotonicity and 2-budget-balance
are straightforward to establish, and Theorem 3 then implies that there is an
O(log2 n)-approximate Moulin mechanism for all GST cost functions.

We can improve the above approximation factor by changing the way that
the KLS primal-dual algorithm splits the increase in active dual variables be-
tween the active terminals. Specifically, if we modify the algorithm to split each

11

such increase equally between the players that have at least one active termi-
nal in the corresponding dual variable, rather than equally among the terminals
themselves, then we obtain the following theorem.

Theorem 4. Every GST cost function with k players and n terminals admits
a 2-budget-balanced, O(log n log k)-approximate Moulin mechanism.

Using techniques from [22], we can show that the bound in Theorem 4 is
the best possible for a O(1)-budget-balanced Moulin mechanism for GST cost
functions.

References

1. A. Agrawal, P. Klein, and R. Ravi. When trees collide: an approximation algorithm
for the generalized Steiner problem on networks. SIAM Journal on Computing,
24(3):440–456, 1995.

2. A. Archer, J. Feigenbaum, A. Krishnamurthy, R. Sami, and S. Shenker. Approx-
imation and collusion in multicast cost sharing. Games and Economic Behavior,
47(1):36–71, 2004.

3. Y. Bartal. Probabilistic approximations of metric spaces and its algorithmic appli-
cations. In Proceedings of the 37th Annual Symposium on Foundations of Computer
Science (FOCS), pages 184–193, 1996.

4. J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbi-
trary metrics by tree metrics. In Proceedings of the 35th Annual ACM Symposium
on the Theory of Computing (STOC), 2003.

5. J. Feigenbaum, A. Krishnamurthy, R. Sami, and S. Shenker. Hardness results for
multicast cost sharing. Theoretical Computer Science, 304:215–236, 2003.

6. J. Feigenbaum, C. Papadimitriou, and S. Shenker. Sharing the cost of multicast
transmissions. Journal of Computer and System Sciences, 63(1):21–41, 2001.

7. M. X. Goemans and D. P. Williamson. A general approximation technique for
constrained forest problems. SIAM Journal on Computing, 24(2):296–317, 1995.

8. J. Green, E. Kohlberg, and J. J. Laffont. Partial equilibrium approach to the free
rider problem. Journal of Public Economics, 6:375–394, 1976.

9. A. Gupta, A. Srinivasan, and É. Tardos. Cost-sharing mechanisms for network
design. In Proceedings of the 7th International Workshop on Approximation Al-
gorithms for Combinatorial Optimization Problems (APPROX), volume 3122 of
Lecture Notes in Computer Science, pages 139–150, 2004.

10. N. Immorlica, M. Mahdian, and V. S. Mirrokni. Limitations of cross-monotonic
cost-sharing schemes. In Proceedings of the 16th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 602–611, 2005.

11. K. Jain and V. Vazirani. Applications of approximation algorithms to cooperative
games. In Proceedings of the 33rd Annual ACM Symposium on the Theory of
Computing (STOC), pages 364–372, 2001.

12. K. Jain and V. Vazirani. Equitable cost allocations via primal-dual-type algo-
rithms. In Proceedings of the 34th Annual ACM Symposium on the Theory of
Computing (STOC), pages 313–321, 2002.

13. K. Kent and D. Skorin-Kapov. Population monotonic cost allocation on mst’s. In
Operational Research Proceedings KOI, pages 43–48, 1996.

12

14. J. Könemann, S. Leonardi, and G. Schäfer. A group-strategyproof mechanism
for Steiner forests. In Proceedings of the 16th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 612–619, 2005.

15. J. Könemann, S. Leonardi, G. Schäfer, and S. van Zwam. From primal-dual to
cost shares and back: A stronger LP relaxation for the steiner forest problem. In
Proceedings of the 32nd Annual International Colloquium on Automata, Languages,
and Programming (ICALP), volume 3580 of Lecture Notes in Computer Science,
pages 1051–1063, 2005.

16. S. Leonardi and G. Schäfer. Cross-monotonic cost-sharing methods for connected
facility location. In Proceedings of the Fifth ACM Conference on Electronic Com-
merce (EC), pages 242–243, 2004.

17. A. Mas-Colell, M. D. Whinston, and J. R. Green. Microeconomic Theory. Oxford
University Press, 1995.

18. H. Moulin. Incremental cost sharing: Characterization by coalition strategy-
proofness. Social Choice and Welfare, 16:279–320, 1999.

19. H. Moulin and S. Shenker. Strategyproof sharing of submodular costs: Budget
balance versus efficiency. Economic Theory, 18:511–533, 2001.

20. M. Pál and É. Tardos. Group strategyproof mechanisms via primal-dual algo-
rithms. In Proceedings of the 44th Annual Symposium on Foundations of Computer
Science (FOCS), pages 584–593, 2003.

21. K. Roberts. The characterization of implementable choice rules. In J. J. Laffont,
editor, Aggregation and Revelation of Preferences. North-Holland, 1979.

22. T. Roughgarden and M. Sundararajan. Approximately efficient cost-sharing mech-
anisms. Submitted, 2006.

23. T. Roughgarden and M. Sundararajan. New trade-offs in cost-sharing mechanisms.
In Proceedings of the 38th Annual ACM Symposium on the Theory of Computing
(STOC), pages 79–88, 2006.

