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Abstract
The k-means method is a widely used technique for clustering points in Euclidean space. While
it is extremely fast in practice, its worst-case running time is exponential in the number of data
points. We prove that the k-means method can implicitly solve PSPACE-complete problems,
providing a complexity-theoretic explanation for its worst-case running time. Our result parallels
recent work on the complexity of the simplex method for linear programming.
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1 Introduction

The k-means method, also known as Lloyd’s algorithm [15], is a widely used technique for
clustering points in Euclidean space. It can be viewed as a local search algorithm for the
problem of, given n data points in Rd, choosing k centers in Rd to minimize the sum (or
average) of squared Euclidean distances between each point and its closest center.1 The
method begins with an arbitrary set of k initial centers. Each point is then reassigned to
the center closest to it, and each center is recomputed as the center of mass of its assigned
points. Every iteration decreases the objective function value of the clustering, and these
two steps are repeated until the algorithm stabilizes.

Three basic facts about the k-means method are:
1. It is extremely fast in practice, and for this reason is widely used, perhaps more than any

other clustering algorithm. For example, Berkhin [6] states that it “is by far the most
popular clustering algorithm used nowadays in scientific and industrial applications.”

2. The worst-case running time of the method is exponential in the number of points. This
was first proved by Arthur and Vassilvitskii [4], and extended to the plane by Vattani [18].

3. It has polynomial smoothed complexity in the sense of Spielman and Teng [17]: for
every choice of data points, in expectation over Gaussian perturbations with standard
deviation σ of these points, the running time of the method is polynomial in the input
size and in 1/σ [3].2

∗ This work was supported in part by NSF grant CCF-1524062 and a Stanford Graduate Fellowship.
1 This problem is NP -hard, even in the plane [16].
2 We focus on properties that concern the running time of the k-means method. Like with any local

search algorithm, one can also consider the approximation quality of the solution output by the method;
see the well-known k-means++ method [5] for an initialization technique with a provable guarantee,
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252:2 The Complexity of the k-means Method

These three properties of the k-means method illustrate a clear parallel with the simplex
method for linear programming. The simplex method is famously fast in practice, but Klee
and Minty [14] showed that it has exponential worst-case running time. These lower bounds
have since been extended to many different pivot rules (see e.g. Amenta and Ziegler [2]),
and also to restricted classes of linear programs, such as minimum-cost flow [19]. On the
other hand, both the average-case and smoothed running times of the simplex method are
polynomial (see Spielman and Teng [17] and the references therein).

Disser and Skutella [9] initiated a fresh take on the worst-case exponential running time
of the simplex method, by showing that it inadvertently solves problems that are much
harder than linear programming. Specifically, they showed how to efficiently embed an
instance of the (NP -complete) Partition problem into a linear program so that the trajectory
of the simplex method immediately reveals the answer to the instance. In this sense, the
simplex method can solve NP -hard problems, thereby providing an explanation of sorts for
its worst-case running time. A similar line was taken by Adler et al. [1], who exhibited a pivot
rule with which the simplex method can solve PSPACE-complete problems, and Fearnley
and Savani [10], who proved analogous results with Dantzig’s original pivot rule. These
results echo earlier works on PLS-complete local search problems, where computing the
specific local minimum computed by local search is a PSPACE-complete problem (assuming
completeness is proved using a “tight” reduction, as in almost all known examples) [12], and
the results of Goldberg et al. [11] showing that computing the outcome of various algorithms
that solve PPAD-complete problems, such as the Lemke-Howson algorithm for computing a
Nash equilibrium, are PSPACE-complete problems.

Our contribution is a proof that the k-means method, just like the simplex method,
inadvertently solves PSPACE-complete problems. That is: computing the outcome of the
k-means method, given an instance of k-means and an initialization for the k centers, is a
PSPACE-complete problem.3 Like with the earlier results on the simplex method, this result
provides a new interpretation of the worst-case running time of the k-means method — it is
exponential not because the work done is inherently wasteful, but rather because it solves a
much harder problem than the one it was originally designed for. Our result also implies,
under appropriate complexity assumptions, that there is no way of significantly “speeding
up” the k-means method (in the worst case) without changing its final state.

I Theorem 1. Given a k-means input (X , C), it is PSPACE-hard to determine the final
cluster centers.

2 Preliminaries

We briefly review the C-path problem, which serves as the starting point for our reduction.
The C-path problem was used by Adler, Papadimitriou, and Rubinstein to show that
determining whether a particular basis occurs on the path of the simplex algorithm, under
certain pivoting rules, is PSPACE-complete [1]. The C-path problem is as follows: we are
given as input a boolean circuit C with fan-in 2 which takes in its own input of n bits, and a
target binary string t. For every input x, C(x) is at most Hamming distance one from x, i.e.

and [8, 7] for matching lower bounds on this particular method. Constant-factor guarantees are also
known for different local search algorithms [13].

3 Determining the complexity of computing any local minimum of the local search problem corresponding
to the k-means method — not necessarily the local minimum computed by the method on a given
initialization — is an intriguing open problem.
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C computes an index (if any) to flip. Note that this means that C’s input and output are
the same size. Suppose we begin with the all-zeroes binary string and repeatedly apply C.
The sequence we get, (0, C(0), C(C(0)), . . .), is the path of C. We want to compute whether
this path includes t.

I Lemma 2 ([1]). There is a family of circuits C of size polynomial in the number of inputs
and of polynomial complexity such that C-path is PSPACE-complete.

3 Reduction Sketch

In this section, we sketch the reduction we use to prove Theorem 1. For the sake of clarity
and brevity, we omit some technical details here which are addressed in the full construction.
Reminder of Theorem 1 Given a k-means input (X , C), it is PSPACE-hard to determine
the final cluster centers.

Recall that we reduce from the C-path problem, where we have a circuit C and target
binary string t. We know that if the path of C ever reaches t, it must do so within 2n steps.
Our plan of attack is to encode circuit C into k-means, and then use the reset gadget of
Arthur and Vassilvitskii [4] to repeatedly run the encoded circuit on its own output. It is
worth noting that although Vattani [18] showed that k-means can be made to run for an
exponential number of iterations even in the plane, this planar construction is different in a
fundamental detail that we depend on. In Arthur and Vassilvitskii’s construction, a reset
gadget is capable of resetting all earlier cluster centers. In Vattani’s construciton, a reset
gadget resets only the previous cluster center, but does so twice. These gadgets both suffice
when the base instance is a single cluster, but only the former can handle a more complex
base instance with multiple clusters.

Encoding the Circuit
One benefit of choosing the C-path problem is that encoding the circuit is simply a matter
of encoding its gates. We use the location of a certain cluster center to represent a boolean
value of our gate. When we compute that a gate evaluates to false, its cluster center moves
from a starting location to a false region. If it evaluated to true, it would move into a disjoint
true region instead.

We can assume without loss of generality that our circuit only uses NAND gates. We
go through these gates in topological order; with each new NAND gate we introduce a new
dimension to our k-means instance. Hence, the inputs to our current gate always lie in a
lower-dimensional space. Our NAND gate has two inputs, each with their own false and
true region in the space below. Suppose we place an intermediate point roughly d− ε units
above each of these regions which are part of cluster i whose center is currently another d
units above them, for some large distance d > 0 and tiebreaking constant ε > 0. When the
input cluster centers move to their false or true regions, they steal the respective point above
them from cluster i. Depending on which points are stolen, the center of cluster i moves to a
predictable location. With additional arranging of the intermediate points, the center moves
to either a false region or a true region, the two of which are disjoint.

Repeatedly Running the Circuit
Unfortunately, we cannot immediately apply Arthur and Vassilvitskii’s reset gadgets, because
they are designed to return a set of cluster centers from specific final locations to initial
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locations [4]. We care about the final locations of our cluster centers because they represent
the output value of our circuit and should affect the input value for the next iteration.

We solve this by, instead of using a single AV reset gadget to reset all cluster centers,
using two AV reset gadgets for each input/output bit. One gadget detects when the output
bit is false and returns the cluster center to its initial position while also setting the input
bit to false. The other gadget does the same but for true bits. Furthermore, we can still
layer these gadgets; gadgets reset all corresponding gadgets in previous layers. With only n
layers, we can run the circuit 2n times, enough to guarantee that t will appear if it is indeed
in the path of the circuit.

As a final step, we add a gadget to track whether t has appeared. To do this, suppose we
modify the circuit so that a special bit is 1 if and only if the input was t. We can use the
same idea as with NAND gates; we add an intermediate point roughly d− ε units above the
true region of this special bit, which are part of a cluster whose center is an additional d
units above the intermediate point. The only other point in this cluster, in fact, is d units
above the center. If the special bit ever becomes 1, the intermediate point will be stolen and
the cluster center will move to the top point. After this, the center is 2d from any other
point and can neither gain nor lose data points. All we need to check in the k-means output
is the location of this center to know whether the path of C includes t.

4 Formal Reduction Proof

In this section, we formally prove Theorem 1. We follow the sketch given in Section 3.
Missing tables can be found in Appendix A.

Encoding the Circuit
Recall that we begin with an instance of the C-path problem, (C, t) where we want to know
if t is on the path of C. It will be convenient to convert C so that it only has NAND gates
instead of the standard AND, OR, and NOT gates. We also require that each gate has a
fan-out of at most two, but introduce a special SPLIT gate which takes in a single bit and
outputs it back. This can be implemented with only a constant blowup in the number of
gates, since fan-in larger than two can be simulated with a binary tree of SPLIT gates (and
the number of nodes is at most twice the number of leaves). We require that the inputs of a
NAND gate can only SPLIT gates, which can be guaranteed by inserting a SPLIT gate of
fan-out one before each NAND gate. This at most doubles the number of gates. We also
require that the inputs of a NAND gate must be at the same depth and that all outputs are
at the same depth. One slightly inefficient, yet still polynomial method to guarantee this is
to take every NAND gate and place it in its own layer. Inside a layer, there is only a single
NAND gate, but we use SPLIT gates to pass on the other values. We add SPLIT gates after
outputs which occur too early. This synchronizes the circuit with only a quadratic blowup in
the number of gates.

We represent boolean values in our circuit with the location of a cluster center. Each
cluster center serves to signal the output of a gate to only one other gate (why we bound the
fan-out). Gate i uses cluster centers c2i−1 and c2i. Cluster center cj has an initial location
sj , a false region centered at bj,0 with radius rj , a true region centered at bj,1 with the same
radius rj , and a final location tj . At some timestep, the center will move from its initial
location to either its false region or its true region, which serves as a signal to the gate that
takes it as input. It then eventually moves to its final location. We guarantee that no two
initial locations, false regions, true regions, or final locations overlap, even over different
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Figure 1 SPLIT Gadget, Upper Half

clusters. This property remains true when moving the final location towards the average of
the false and true region centers. Finally, we guarantee a cluster center is always the closest
center to any of its locations or regions.

We construct gates in topological order. For each gate i, we introduce two new dimensions:
(2i− 1) and (2i). We let ej be the standard basis vector for dimension j. We also grow the
scale of our construction at each step; for each dimension, we choose a scaling factor di > 0
so that d1 � d2 � · · · � d2m. The data points we introduce with dimension i are within
O(di) of the origin. The idea is that di+1 is large enough compared to di so that two points
which differ by di+1 in their (i+ 1)th coordinate and by O(di) in their first i coordinates are
still roughly di+1 apart. We also use a small ε > 0 to break ties (note ε� d1). We also use
d(u,v) to represent the Euclidean distance between points u and v.

SPLIT Gadget
We first explain the construction of the simpler SPLIT gadget. Suppose we have the ith

gate which takes the jth cluster center as input. The data points and regions we use in this
construction are listed in Table 1 and the upper half of the gadget is depicted in Figure 1.
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Suppose that at time T , the jth cluster center moves to its false or true region. We want
to notice when this occurs, so we place an intermediate point uj,0 roughly (d2i−1 − ε) above
the false region, an intermediate point uj,1 roughly (d2i−1 − ε) above the true region, an
intermediate point vj,0 roughly (d2i−1 − ε) below the false region, and an intermediate point
vj,1 roughly (d2i−1 − ε) below the true region. Note that the actual heights are actually
scaled to account for the radius of each of these regions; every point in the region at most
(d2i−1 − ε) away from its two intermediate points.

We want the (2i− 1)th cluster center to be d units away from the top two intermediate
points and the (2i)th cluster center to be d units away from the bottom two intermediate
points. For each intermediate point u, we add a counterbalancing point u′ so that the average
of the two is our desired initial center location.

At time T + 1, the jth cluster steals either uj,0 and vj,0 or uj,1 and vj,1, depending
on whether it was false or true. This causes the (2i − 1)th/(2i)th cluster centers to move
up/down to their respective false or true regions (which are actually balls of radius zero).
This does not affect the (2i− 1)-coordinate of the jth cluster since the two points it stole
cancel out. However, it does move the center towards the center of the region it was in.

At time T + 2, because the (2i − 1)th and (2i)th cluster centers moved away from the
lower-dimensional space, the other intermediate points are stolen by cluster j (recall we
guarantee that cluster center j is the closest center to any of its regions, and in particular to
the false or true region it was not in). This causes the (2i− 1)th/(2i)th cluster centers to
move up/down to their final locations. Again, this does not affect the (2i− 1)-coordinate
of the jth cluster because the points cancel out. However, it does move the center towards
the center of the region it was not in. Notice we have affected the final location of the jth

cluster center, but we already assumed that moving it towards the average of the false and
true regions would keep all locations and regions disjoint.

We see that we satisfy the assumptions made about the construction; the locations and
regions we create are disjoint from all others because the other locations and regions are
within O(d2i−2) of the origin and all of ours are at least Ω(d2i−1) from the origin. This also
makes our cluster center the closest to all of our locations and regions (since other centers
cannot escape the lower-dimensional space due to our balancing). Finally, moving our final
location towards the average of the false and true regions keeps it disjoint.

NAND Gadget
We now proceed to the constrution of the NAND gadget. Suppose we have the ith gate which
takes the jth and kth cluster centers as input. For simplicity, we concern ourselves with the
data points and cluster center regions for cluster (2i− 1) only. The (2i)th cluster’s points
and regions can be found by negating the (2i− 1)th and (2i)th coordinates. The points and
regions we do present are listed in Table 2 and depicted in Figure 2. For this gadget, we talk
about dimension 2i− 1 as left/right and dimension 2i as up/down.

We have the same core plan as the SPLIT gadget. We add intermediate points above the
two false regions and above the two true regions. We also slide these intermediate points
left and right slightly; we shift intermediate points above false regions to the right and
intermediate points above true regions to the left. Because d2i−1 � d2i, these points are still
roughly d2i − ε from their respective regions.

The initial center of cluster (2i− 1) is d2i above all four intermediate points; we achieve
this by adding counterbalancing points so that the average of a point and its counterbalancing
partner is our desired center.

Suppose at time T both cluster centers j and k move to false or true regions. Then at
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Figure 3 Input Gadget

time T + 1, they each steal an appropriate intermediate point above them. This causes the
center of cluster (2i− 1) to definitely upwards, and possibly left or right depending on what
values j and k had. If both j and k are false, they steal intermediate points on the right and
our center moves to the left. If they are both true, our center moves to the right. If we have
one of each, the center does not move left or right. We can place our false region to capture
the right possibility and our true region to capture both the center and left possibilities.

At time T + 2, cluster centers j and k steal the intermediate point for the region they did
not enter, because cluster center (2i− 1) moved up and they are the closest center to any of
their respective regions. This moves the cluster center (2i − 1) to its final location. Note
that we have shifted the final location of cluster centers j and k, but this keeps locations
and regions disjoint by assumption.

We satisfy all assumptions made about the construction for essentially the same reasons
as before. The one difference is regarding moving our final location towards the average of the
false and true regions. It remains disjoint because d2i−1 � d2i, so it descends approximately
straight from above, avoiding the false and true regions.

Input Gadget

We also provide a simple gadget which is used to signal the value of an input bit. We only
use the (2i− 1)th cluster center and do not actually provide an initial location. Instead, the
center is intended to start in either the false or true region, which signals its value. It then
immediately moves to its final location. Dimension (2i − 1) is used to separate the false
and true regions while dimension (2i) is used to separate the gadget from previous gadgets.
The points and regions are listed in Table 3 and depicted in Figure 3. Note that unlike
previous gadgets, there is no corresponding bottom half to this gadget, since we do not need
to balance its effect on previous gadgets.
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AV Reset Gadget Review
Before we describe how we repeatedly run the circuit, we briefly review the reset gadgets
of Arthur and Vassilvitskii [4]. A configuration is signaling if at least one final cluster
center is distinct from every cluster center arising in previous iterations. A configuration
is super-signaling if all final cluster centers are distinct from every cluster center arising in
previous iterations and there is an alternate initial configuration of centers that is essentially
identical except at least one final cluster center is different.

AV gadgets are a result of two constructions (Lemma 3.3 and Lemma 3.4 in their paper).
One construction (Lemma 3.3) converts a super-signaling configuration into a signaling
configuration which runs from the initial configuration and then swaps to the alternate intial
configuration. The other (Lemma 3.4) converts a signaling configuration into a super-signaling
configuration. They share similar ideas to our gadget constructions above; intermediate
points are placed above and below the expected locations. Similar to our NAND gadget
shifting the intermediate points left/right, they shift the intermediate points in a circle using
two additional dimensions. They then use a second set of intermediate points which are
stolen according to how points were shifted in a circle. This enables them to correct every
center to its new initial location. There are also two additional clusters which represent an
alternate initial configuration.

Taken together, these two constructions take a lower-dimensional signaling configuration
and make it run twice by resetting its final cluster positions to their initial positions. Layering
n gadgets results in 2n resets of the bottom-level circuit.

We make two key observations about the capabilities of AV reset gadgets. First, they
need not reset the positions of all lower-dimensional clusters; we be selective and only reset
some. Second, the signaling cluster may reach its distinct location one step before it reaches
its final position. This works because intermediate points may be placed above and below its
distinct location, and the signaling cluster will steal them and reach its final position in the
same time step. The location of the intermediate point which corrects its final location to its
initial location still uses its real final location. These observations enable us to use AV reset
gadgets to set the input of the circuit to its previous output, despite our particular method
of signalling boolean values.

Repeatedly Running the Circuit
We are now ready to explain how to repeatedly run our encoded circuit. We need to run it
up to 2n times to guarantee we reach t, if at all possible. We plan to do this with AV gadgets.
Unfortunately, AV reset gadgets work by knowing the exact final locations of cluster centers
and moving them to exact initial locations. We want to copy circuit output to input. Not
only do we not have exact final locations, but we also want them to influence the new initial
locations. This is solved by using one AV reset gadget chain per input bit and each boolean
value it can take on. An AV reset gadget for bit i being false is signaled by the cluster center
of output bit i entering its false region. It corrects the final location of the cluster center to
the false region of input bit i and it corrects the final location of input bit i to the initial
location of output bit i.

We want to run the circuit 2n times, so a first attempt is to reset each (input bit,
value) pair that many times. Unfortunately, this has unintended behavior if the path of
C has unbalanced parity. For example, suppose we had a circuit C where C(00) = 01 and
C(01) = 00. In four iterations, we follow the path (00, 01, 00, 01, 00). The false AV reset
gadget for the first input bit is now fully expended and stops resetting, but the AV reset
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gadgets for the second input bit still reset it, causing only part of the circuit input to be
copied from the output. In a more complex example, this could evaluate the circuit on an
input not actually in the path of C.

To avoid this, we transform C so that it follows a balanced path, i.e. in every bit it
alternates between true and false. Circuit C2 has an additional parity bit in its input. When
this auxiliary bit is zero, it simply flips the entire input. When the auxiliary bit is one, it
again flips the entire input, and then applies C2 to the standard input. This can be be
implemented with only polynomially many extra gates. More formally:

C2(xb1) =
{

x̄1 if b1 = 0
C(x̄)0 if b1 = 1

We now have n+ 1 input bits and plan to reset each 2n times, for each value. It will also
be convenient to keep track of whether we have reached t yet, so that we can simply examine
the final k-means state. We add another auxiliary bit, which transitions from zero to one
when the input is t. This also can be implemented with only polynomially many extra gates.
Formally:

C3(xb1b2) =


C2(xb1)0 if b2 = 0,xb1 6= t0
C2(xb1)1 if b2 = 0,xb1 = t0
C2(xb1)1 if b2 = 1

Note that for our second auxiliary bit, we want to reset a false value 2n+1 times and
we do not worry about resetting a true value. Also, we can conveniently use the AV reset
widget of this bit to reset the inner gates of the circuit. This completes our circuit reset
construction.

Output Gadget

Our final gadget records whether b2 = 1 at any point. Suppose that b2 is represented by the
position of cluster center i. We assume without loss of generality that it is computed by a
SPLIT gate. We use one final additional dimension, with the largest scale. Suppose this is
dimension D. We add points at (bi,1 + (dD − ε)eD) and (bi,1 + (3dD − ε)eD). We also add
a final cluster center at (bi,1 + (2dD − ε)eD). The former point can only be stolen from this
cluster if b2 = 1, and when this happens the cluster center will move to the latter point. But
the latter point is 2dD from the former point, so the cluster center can never recapture it.

As review, the completed construction uses gadgets in the following order (from low-
dimensional to high-dimensional):
1. n+ 2 input gadgets which represent the input bits,
2. poly(n) NAND and SPLIT gadgets which represent gates and output bits,
3. (n+ 1)(2n) + (n+ 1) reset gadgets to repeatedly run the circuit,
4. and one output gadget which represents the final result.

We have produced a polynomially-sized k-means instance from a C-path instance. The
final state of our output gadget indicates the answer to the C-path instance, so computing
the final state of k-means is enough to solve a PSPACE-complete problem. This completes
the proof.
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5 Conclusions

This paper proved that the k-means method inadvertently solves PSPACE-complete problems,
echoing analogous results for the simplex method [1, 9, 10]. There are at least three interesting
directions in which our result might be extended.
1. We conjecture that the following problem is PLS-complete: given an instance of k-means,

compute an arbitrary local minimum of the k-means method. Such a result, if proved
using “tight” reductions4 (see [12]), would imply our Theorem 1.5

2. The worst-case running time of the k-means method is exponential even in two dimen-
sions [18], while our PSPACE-completeness reduction produces instances with a large
number of dimensions. Is computing the outcome of k-means still PSPACE-complete in
planar instances? Recall that Vattani’s reset gadgets work by resetting only the previous
gadget, but doing so twice. Our reduction depended on the ability of AV reset gadgets to
reset all previous clusters so that the entire circuit could be reset.

3. Does the problem of computing the outcome of k-means remain PSPACE-complete when
the initial centers are chosen greedily, as in k-means++ [5]?
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Data Point Location Purpose

uj,0 bj,0 +
(√

(d2i−1 − ε)2 − r2
j

)
e2i−1 Detect j is False

uj,1 bj,1 +
(√

(d2i−1 − ε)2 − r2
j

)
e2i−1 Detect j is True

u′j,0 uj,1 +
(√

4d2
2i−1 − d(uj,0,uj,1)

)
e2i−1 Counterbalance uj,0

u′j,1 uj,0 +
(√

4d2
2i−1 − d(uj,0,uj,1)

)
e2i−1 Counterbalance uj,1

vj,0 bj,0 −
(√

(d2i−1 − ε)2 − r2
j

)
e2i−1 Detect j is False

vj,1 bj,1 −
(√

(d2i−1 − ε)2 − r2
j

)
e2i−1 Detect j is True

v′j,0 uj,1 −
(√

4d2
2i−1 − d(uj,0,uj,1)

)
e2i−1 Counterbalance vj,0

v′j,1 uj,0 −
(√

4d2
2i−1 − d(uj,0,uj,1)

)
e2i−1 Counterbalance vj,1

Cluster Center Region Center Radius

s2i−1
1
4
(
u2i−1,0 + u2i−1,1 + u′j,0 + u′j,1

)
0

b2i−1,0
1
3
(
u2i−1,1 + u′j,0 + u′j,1

)
0

b2i−1,1
1
3
(
u2i−1,0 + u′j,0 + u′j,1

)
0

t2i−1
1
2
(
u′j,0 + u′j,1

)
0

s2i
1
4
(
v2i−1,0 + v2i−1,1 + v′j,0 + v′j,1

)
0

b2i,0
1
3
(
v2i−1,1 + v′j,0 + v′j,1

)
0

b2i,1
1
3
(
v2i−1,0 + v′j,0 + v′j,1

)
0

t2i
1
2
(
v′j,0 + v′j,1

)
0

Table 1 SPLIT Gadget Points and Regions
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Data Point Location Purpose

uj,0 bj,0 + d2i−1e2i−1 + (d2i − ε) e2i Detect j is False

uj,1 bj,1 − d2i−1e2i−1 + (d2i − ε) e2i Detect j is True

uk,0 bk,0 + d2i−1e2i−1 + (d2i − ε) e2i Detect k is False

uk,1 bk,1 − d2i−1e2i−1 + (d2i − ε) e2i Detect k is True

u′j,0 −bj,0 − d2i−1e2i−1 + (3d2i − ε) e2i Counterbalance uj,0

u′j,1 −bj,1 + d2i−1e2i−1 + (3d2i − ε) e2i Counterbalance uj,1

u′k,0 −bk,0 − d2i−1e2i−1 + (3d2i − ε) e2i Counterbalance uk,0

u′k,1 −bk,1 + d2i−1e2i−1 + (3d2i − ε) e2i Counterbalance uk,1

Cluster Center Region Center Radius

s2i−1 (2d2i − ε)e2i 0

b2i−1,0 − 1
6 (bj,1 + bk,1) + 1

2d2i−1e2i−1 + ( 7
3d2i − ε)e2i

1
5d2i−1

b2i−1,1 − 1
6 (bj,0 + bk,0)− 1

6d2i−1e2i−1 + ( 7
3d2i − ε)e2i

1
5d2i−1

t2i−1 − 1
4 (bj,0 + bj,1 + bk,0 + bk,1) + (3d2i − ε)e2i 0

Table 2 NAND Gadget Points and Regions, Upper Half
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Data Point Location Purpose

v2i−1,0 −d2i−1e2i−1 + d2ie2i False Point

v2i−1,1 d2i−1e2i−1 + d2ie2i True Point

Cluster Center Region Center Radius

b2i−1,0 −d2i−1e2i−1 + d2ie2i 0

b2i−1,1 d2i−1e2i−1 + d2ie2i 0

t2i−1 d2ie2i 0

Table 3 Input Gadget Points and Regions
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