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Abstract

Inspired by recent algorithms for electing a leader in a distributed system, we study the

following game in a directed graph: each vertex selects one of its outgoing arcs (if any) and

eliminates the other endpoint of this arc; the remaining vertices play on until no arcs remain.

We call a directed graph lethal if the game must end with all vertices eliminated and mortal

if it is possible that the game ends with all vertices eliminated. We show that lethal graphs

are precisely collections of vertex-disjoint cycles, and that the problem of deciding whether

or not a given directed graph is mortal is NP-complete (and hence it is likely that no “nice”

characterization of mortal graphs exists).
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1 Introduction

A fundamental and well-studied problem in distributed computation is that of electing a unique

leader from the nodes of a network. Several recent algorithms for this problem (in both synchronous

and asynchronous models) proceed by successively eliminating vertices (i.e., designating them in-

eligible for leadership) until only one vertex (the elected leader) remains [1, 2, 5]. Inspired by this

algorithmic theme of “successive elimination”, we define and study the following simple game in

a directed network G with vertex set V (G) and arc set E(G). Roughly, the game consists of a

sequence of “rounds”, where in one round each vertex v selects one of its outgoing arcs (if there
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are any), say (v,w), and eliminates the vertex w. In the following round, the game continues in

the directed graph induced by the remaining vertices; the game ends when no arcs remain. While

recent leader election algorithms suggested this game to us, we do not claim that it models the

leader election problem.

Formally, we define a round R in G to be a subset of E(G) such that if v is a vertex with positive

out-degree in G, there is precisely one arc in R with tail v. A vertex that is the head of no arc in

R is called a survivor of R, and we denote the set of all survivors of a round R by s(R). By a game

in G, we mean a sequence (G1, R1, G2, R2, . . . , Gk) where:

• G1 = G

• for i = 1, . . . , k − 1, Ri is a round in Gi

• for i = 1, . . . , k − 1, Gi+1 is the subgraph of Gi induced by s(Ri)

• Gk has an empty arc set (and possibly an empty vertex set).

Games of this sort have previously been investigated in complete directed graphs, under the as-

sumption that in each round a vertex selects an outgoing arc uniformly at random. In particular,

the probability that some vertex survives a random game has been characterized (as a function of

the number of vertices) [3, 6].

We call a game lethal if its final graph is empty. We call a directed graph G lethal if every

game in G is lethal, and mortal if some game in G is lethal. Put differently, a random game in

G is lethal with probability 1 if and only G is lethal, while it is lethal with probability 0 if and

only if G is not mortal. We are interested in characterizing the sets of lethal and mortal directed

graphs. In Section 2 we prove that a graph is lethal if and only if it is a collection of vertex-disjoint

cycles. In Section 3 we give evidence that no similarly simple characterization of mortal graphs

exists, by showing that the problem of deciding whether or not a given directed graph is mortal is

NP-complete.

2 Lethal Graphs

We begin with an auxiliary definition and an easy lemma. Call a directed graph G rapidly lethal if

G is lethal and in addition every game in G contains only one round (that is, all vertices must be

eliminated after only one round of play).
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Lemma 1 A graph is rapidly lethal if and only if it is a collection of vertex-disjoint cycles.

Proof : One direction is obvious. For the other, it suffices to show that each vertex in a rapidly

lethal graph G has in-degree and out-degree 1. Since any game in G has the form (G,R, ∅), any

round R must contain n arcs with distinct heads and distinct tails (we must have s(R) = ∅), which

immediately implies that each vertex must have in-degree and out-degree at least 1. Further, if

any vertex v had in-degree 2 or more, we could define a round with at least one survivor (select

two arcs with head v), a contradiction. Finally, a simple handshaking argument shows that every

vertex must have out-degree 1. �

We next give a proof of our first result, a characterization of lethal graphs.

Theorem 2 A graph is lethal if and only if it is a collection of vertex-disjoint cycles.

Proof : By the lemma, it suffices to show that any lethal graph is rapidly lethal. Suppose not, and

consider a counterexample G having the fewest possible number of vertices and a (lethal) game in G

with more than one round, say (G1, R1, . . . , Gk, Rk, ∅) with k ≥ 2. Let H denote the subgraph of G

induced by V (Gk) (the “last survivors”) and let K denote the subgraph induced by V (G)\V (Gk).

Since G is lethal, H must be lethal and hence by minimality of G and Lemma 1 is a collection of

vertex-disjoint cycles. Let T denote the only possible round in H.

We next claim that K must be lethal. Assume the contrary, and let (K1, S1,K2, S2, . . . ,Kr)

be a non-lethal game in K (thus Kr has a non-empty vertex set). For each vertex v ∈ V (K) with

out-degree 0 in K and strictly positive out-degree in G, select an arbitrary outgoing arc (v,w)

(with w necessarily in V (H)). Let S′ denote the (possibly empty) collection of these arcs. Then,

we may extend the non-lethal game in K to a non-lethal game in G (intuitively by running games

in H and K in parallel), namely (G,S1 ∪ S′ ∪ T,K2, S2, . . . ,Kr); this contradicts the assumption

that G is lethal, proving K lethal.

Appealing once more to the minimality of G and Lemma 1, K must be a collection of vertex-

disjoint cycles (call its only possible round S). Thus, G is a collection of vertex-disjoint cycles

together with some arcs between H and K. However, if (v,w) is an arc in G with one endpoint in

each of V (H), V (K), then taking e to be the unique arc in S ∪T with tail v, (S ∪T ∪{(v,w)})\{e}
is a round in G with precisely one survivor (namely, the head of e), contradicting the assumption

that G is lethal. Thus G is the union of vertex-disjoint cycles and fails to be a counterexample. �

We note that Theorem 2 gives a trivial linear-time algorithm for deciding whether or not a given

graph is lethal. In addition, the proof of Theorem 2 is easily modified to give a polynomial-time
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algorithm for constructing a non-lethal game in a non-lethal graph.

3 Mortal Graphs

In this section we direct our attention toward the set of mortal graphs—graphs in which some game

is lethal. Our main result gives strong evidence that no simple (more precisely, polynomial-time

verifiable) characterization of mortal graphs exists (cf. Theorem 2).

Theorem 3 The problem of deciding whether or not a given directed graph is mortal is NP-

complete.

Proof : The problem is clearly in NP (a lethal game can be checked in polynomial time). To

show hardness, we reduce the problem of checking whether or not a given CNF formula φ is

satisfiable to that of checking whether or not a given graph is mortal (see [4] for the relevant

background). Suppose a given CNF formula φ has n clauses C1, . . . , Cn and contains m Boolean

variables x1, . . . , xm. We may assume without loss of generality that no clause contains both a

variable and its negation. Define a graph G as follows:

• clause vertices: for each clause Cj introduce m + 1 vertices uj,1, . . . , uj,m+1

• variable vertices: for each variable xi introduce three vertices vi,T , vi,F , wi

• cleanup vertices: introduce 2n(m + 1) + m − 2 additional vertices

• introduce the arc (vi,α, uj,k) (where α ∈ {T, F}) if and only if giving variable xi the truth

assignment α satisfies clause Cj (independent of k)

• for every i = 1, . . . ,m, include the arcs (wi, vi,T ) and (wi, vi,F )

• introduce arcs from each cleanup vertex to each non-clause vertex (including to other cleanup

vertices).

It is clear that the size of G is polynomial in the size of φ. As an example, a sketch of the graph

arising from the formula x1 ∨ x2 is shown in Figure 1.

We claim that G is mortal if and only if φ is satisfiable. First suppose φ is satisfiable, and that

assigning variable xi the truth value αi ∈ {T, F} (for each i) satisfies φ; we will exhibit a lethal

game in G consisting of n(m + 1) + 2 rounds. Construct the first round R1 as follows:
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Figure 1: The mortal graph arising from φ = x1 ∨ x2 (not all arcs are shown).

• for each cleanup vertex, include an outgoing arc whose head is among w1, . . . , wm; moreover,

do this so that all of w1, . . . , wm will be eliminated in the first round

• for each i, include arc (wi, vi,¬αi)

• include an arbitrary outgoing arc for every other variable vertex.

Following round R1, we will be left with a graph containing all of the cleanup vertices, variable ver-

tices corresponding precisely to the satisfying assignment of φ, and some clause vertices. Construct

each of the next n(m+1)−1 rounds as follows: for each variable vertex select an arbitrary outgoing

arc (if there is one) and pick two cleanup vertices that will be precisely the vertices eliminated by

all other selected arcs emanating from cleanup vertices (this is possible since we always have a com-

plete digraph among the remaining cleanup vertices). Thus, following the first n(m + 1) rounds,

there will no longer be any clause vertices: on one hand, every clause vertex can be eliminated

by some remaining variable vertex since every clause is satisfied by the truth assignment; on the

other hand, each remaining variable vertex has out-degree at most n(m + 1) and cannot eliminate

any vertex more than once. The remaining graph thus consists of m variable vertices (now with

out-degree 0) and m cleanup vertices (recall we began with 2n(m + 1) + m − 2 and eliminated 2

in each of the rounds 2, 3, . . . , n(m + 1)). To complete the lethal game, in the penultimate round

select a matching from the cleanup vertices to the variable vertices (leaving only the clique of the

final m cleanup vertices) and in the final round select, for example, a Hamiltonian cycle.
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Finally, we show that if G is mortal then φ is satisfiable. The first key observation is that for

any game in G and for each variable i, at least one of vi,T , vi,F is eliminated in the first round (each

wi must select one of its two outgoing arcs in the first round). The second is that for any clause Cj ,

at most m of the m + 1 clause vertices uj,1, . . . , uj,m+1 will be eliminated in the first round (recall

we assume that no clause of φ contains both a variable and its negation).

Now fix a lethal game in G; in particular all m + 1 clause vertices belonging to a clause Cj are

eventually eliminated and thus some variable vertex of the form vi,αi selects an outgoing arc with

head of the form uj,k in some round subsequent to the first. It is then easy to see that assigning

variable xi the truth value αi ∈ {T, F} whenever the variable vertex vi,αi survives the first round

yields a well-defined partial truth assignment that can be extended to a satisfying assignment of φ

in an arbitrary manner (i.e., if both vi,T and vi,F are eliminated in the first round, then xi may be

given an arbitrary truth value). �
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