
Loal Smoothness and the Prie of Anarhyin Splittable Congestion Games∗Tim Roughgarden† Florian Shoppmann‡April 29, 2013AbstratCongestion games are multi-player games in whih players' osts are additive over a set ofresoures that have anonymous ost funtions, with pure strategies orresponding to ertainsubsets of resoures. In a splittable ongestion game, eah player an hoose a onvex ombina-tion of subsets of resoures. We haraterize the worst-ase prie of anarhy � a quantitativemeasure of the ine�ieny of equilibria � in splittable ongestion games. Our approximationguarantee is parameterized by the set of allowable resoure ost funtions, and degrades withthe �degree of nonlinearity� of these ost funtions. We prove that our guarantee is the bestpossible for every set of ost funtions that satis�es mild tehnial onditions. We prove ourguarantee using a novel �loal smoothness� proof framework, and as a onsequene the guaranteeapplies not only to the Nash equilibria of splittable ongestion games, but also to all orrelatedequilibria.1 IntrodutionCongestion games play a entral role in the theory of worst-ase approximation guarantees forgame-theoreti equilibria. They are expressive enough to apture a number of otherwise unrelatedappliations � inluding routing, network design, oligopoly models, and the migration of speies [2,18, 19, 24, 28℄ � yet strutured enough to permit interesting theoretial guarantees. In the standardmodel introdued by Rosenthal [24℄, there is a ground set of resoures, and eah player selets asubset of them (e.g., a path in a network). Eah resoure has a univariate ost funtion that dependson the load indued by the players that use it, and eah player strives to minimize the sum of theresoures' osts in its hosen strategy (given the strategies hosen by the other players). Beause ofongestion externalities � that is, beause eah player ignores the extra ost its ation imposes onthe other players � Nash equilibria of ongestion games typially do not minimize the joint ost ofthe players.We study the splittable variant of ongestion games, where eah player has a weight wi anda list of available strategies (eah a subset of resoures), and eah player hooses how to split
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p(b) A Nonlinear VariantFigure 1: The prie of anarhy grows with the �degree of nonlinearity� of the resoure ost funtions.frationally its weight over its strategies.1 The splittable model is more appropriate than thetraditional �unsplittable� model in some appliations, suh as multipath routing in networks. Indeed,in the omputer networking literature, the splittable model was studied a deade prior to theunsplittable model, beginning with [22℄. The splittable model also arises naturally when studyingoalitions of players in nonatomi ongestion games, where there is a ontinuum of players [7, 8, 14,16℄.The goal of this paper is to quantify the ine�ieny of Nash equilibria in splittable ongestiongames. To measure ine�ieny, we use the prie of anarhy (POA) [17℄: the worst-ase ratiobetween the sum of players' osts in a Nash equilibrium and in a minimum-ost outome. To developintuition for the POA in ongestion games, we informally review a simple example, essentially due toPigou [23℄. Consider the two-vertex, two-edge network shown in Figure 1(a). Resoures orrespondto edges, and strategies orrespond to s-t paths. Assume that there is a very large number ofplayers, eah with negligible weight, with the total weight of all players summing to 1. Eah edgeis labeled with a ost funtion, desribing the ost inurred by tra� on that edge, as a funtion ofthe sum of the weights of the players on that edge. With negligible-size players, the lower edge is adominant strategy for every player. Thus, there is a Nash equilibrium in whih the average playerost is 1. On the other hand, in an outome where the players are split equally between the twoedges, the average player ost is only 1
2 · 1

2 + 1
2 · 1 = 3

4 . For these reasons, the POA of this game isat least 4
3 .Now suppose we replae the previously linear ost funtion c(x) = x on the lower edge with thehighly nonlinear one c(x) = xp for p large (Figure 1(b)). There is still a Nash equilibrium withaverage ost 1. In the outome with minimum average player ost, there is a small ǫ fration of theplayers on the upper edge, and the average ost is ǫ+ (1− ǫ)p+1. Sine this approahes 0 as ǫ tendsto 0 and p tends to in�nity, the POA grows without bound as p grows large.The �rst point of the previous example is that Nash equilibria are suboptimal even in extremelysimple splittable ongestion games. Of ourse, there might be examples (with linear ost funtions,say) with POA even larger than that in Figure 1(a) due to more ompliated strategy sets or to non-negligible player weights. The seond point of the example above is that the worst-ase ine�ienyof Nash equilibria seems to grow with the �degree of nonlinearity� of the resoure ost funtions.1Deterministially spreading weight over multiple strategies is not equivalent to probabilistially seleting a singlestrategy, exept in the trivial ase of load-independent resoure ost funtions.2



Thus, we expet an optimal upper bound on the worst-ase POA of splittable ongestion games tobe parameterized by the set of allowable resoure ost funtions.1.1 Our ResultsIn this paper, we resolve the worst-ase prie of anarhy in splittable ongestion games. Prior tothis work, no tight bounds on the POA in splittable ongestion games were known, even for thesimplest non-trivial speial ase of a�ne ost funtions. By ontrast, tight bounds for essentially alllasses of ost funtions were proved some years ago for both nonatomi ongestion games (with aontinuum of players, as in Figure 1) and standard (unsplittable) ongestion games [1, 4, 9, 27, 29℄.Our bounds imply that the worst-ase POA in splittable ongestion games is reasonably lose to 1provided the ost funtions are �not too nonlinear�. The degree of nonlinearity that an be toleratedto obey a target upper bound on the POA is qualitatively smaller than in nonatomi ongestiongames, but is qualitatively larger than in standard (unsplittable) ongestion games. Thus, withrespet to the worst-ase POA measure, allowing non-negligible-sized players to hoose frationalstrategies substantially redues ine�ieny.Tehnially, we make two distint ontributions. On the upper-bound side, we de�ne the frame-work of �loal smoothness�, whih provides a su�ient ondition for a game to have a boundedPOA. This framework re�nes the smoothness paradigm introdued in [27℄ for games with onvexstrategy sets, intuitively by requiring ertain inequalities only for nearby pairs of outomes, ratherthan for all pairs of outomes as in [27℄. While the smoothness paradigm in [27℄ provably annotestablish tight bounds on the POA in splittable ongestion games, we show that loal smoothnessarguments an. Further, we prove the following �extension theorem�: every POA bound derived vialoal smoothness applies automatially, without any quantitative degradation, to every orrelatedequilibrium, and hene also to every mixed Nash equilibrium, of the game.Extending POA bounds to more general equilibrium onepts is important beause it weakensthe rationality assumptions under whih the bounds are valid. An upper bound that applies onlyto pure Nash equilibria presumes that players reah one. A bound that applies more generally toorrelated equilibria does not require players to onverge to anything: if a game is played repeatedlyand eah player has vanishing time-averaged �swap regret� [11, 15℄, then the bound applies to theirtime-averaged ost.2Our seond ontribution is a general lower bound. For a set L of allowable resoure ost funtions,we denote by γ(L) the smallest upper bound on the POA that is provable via a loal smoothnessargument. We prove that for every set L that satis�es mild tehnial onditions, the worst-ase POAin splittable ongestion games with ost funtions in L is exatly γ(L). Thus, the worst-ase POAof pure Nash equilibria, mixed Nash equilibria, and orrelated equilibria oinide in suh games.The tehnial hallenge in proving our lower bound stems from its generality: we need to exhibita worst-ase splittable ongestion game for a set L of ost funtions without knowing anything about
L! Our high-level approah is to exhibit an example for whih all of the inequalities used in the upperbound proof are tight, in the spirit of �omplementary slakness� arguments in linear programming.This goal translates to a labyrinth of restritions on a andidate worst-ase splittable ongestiongame � on the allowable ost funtions, on the resoure loads in equilibrium and optimal outomes,and on the relative use of a resoure by di�erent players in an equilibrium. Nevertheless, we show2The blunter �smoothness framework� in [27℄ yields upper bounds that apply even more generally to the oarseorrelated equilibria [12, 20℄ of the game; this is not always the ase for loal smoothness proofs (Example 3.3).3



Table 1: The prie of anarhy in the speial ase of polynomial ost funtions with nonnegativeoe�ients. For splittable ongestion games, the lower bounds are ontributed by the presentwork. The upper bound of 3
2 for a�ne ost funtions was �rst proved by Cominetti et al. [8℄. Forhigher-degree polynomials, we give the �rst losed-form POA upper bounds, essentially mathingthe numerial upper bounds omputed by Harks [14℄.AtomiAtomi unsplittableDegree splittable (weighted) [1℄ Nonatomi [29℄1 1.500 2.618 1.3332 2.549 9.909 1.6263 5.063 47.82 1.8964 11.09 277.0 2.1515 26.32 1,858 2.3946 66.88 14,099 2.6307 180.3 118,926 2.8588 512.0 1,101,126 3.081
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)that all of these onditions an be met simultaneously and thus there are splittable ongestion gameswith POA arbitrarily lose to our upper bound of γ(L).Table 1 illustrates our exat bounds for the speial ase of bounded-degree polynomials withnon-negative oe�ients. The neessary alulations are not immediately obvious and are given inSetion 6. The worst-ase prie of anarhy in splittable ongestion games is generally stritly largerthan that in nonatomi ongestion games (with a ontinuum of players) and stritly less than thatin standard (unsplittable) ongestion games.1.2 Related WorkWe next desribe the prior researh that is most relevant to the present work. See [25, �4.8℄ for thehistory of and many more referenes on splittable ongestion games.Splittable ongestion games seem more di�ult to reason about than other ongestion gamemodels. For example, while the existene of pure Nash equilibria in suh games was established earlyon via �xed-point arguments [13, 22℄, Bhaskar et al. [3℄ showed only reently that suh equilibrianeed not be unique. Splittable ongestion games also exhibit ounterintuitive behavior, like the fatthat fusing two players into one � seemingly, inreasing the amount of ooperation in the game �an inrease the ost of a game's Nash equilibrium [7℄. Finally, two independent proofs laimed thatthe worst-ase prie of anarhy in splittable ongestion games is never worse than that in nonatomiongestion games [10, 26℄. Cominetti et al. [8℄ showed, however, that these proofs are valid only insymmetri games � where all players have the same weight and the same set of strategies � andadapted an example in [7℄ to refute the general laims.The �rst upper bounds on the POA in general splittable ongestion games were given byCominetti et al. [8℄. These bounds are derived using a speial ase of our loal smoothness frame-4



work in whih one of our two parameters (λ in De�nition 3.1) is �xed at 1. This restrited approahyields �nite upper bounds on the worst-ase POA only for ost funtions that are polynomials withdegree at most 3 and nonnegative oe�ients � bounds of 3
2 , 2.564, and 7.826 for a�ne, quadrati,and ubi ost funtions, respetively. Harks [14℄ showed that allowing the parameter λ to varyyields signi�antly better POA bounds. The generi upper bound framework in [14℄ is equivalent toours, though it produes bounds with a more ompliated form. The simpli�ed form derived herepermits the �rst losed-form expressions for the POA for polynomial ost funtions with nonnega-tive oe�ients and, more importantly, enables the onstrution of mathing lower bounds for alllasses of allowable ost funtions that satisfy mild tehnial onditions.Prior to our work, there were no upper bounds on the POA of splittable ongestion games forany equilibrium onept more general than pure Nash equilibria.The best lower bounds on the POA that were known previously follow from ounterexamplesin Cominetti et al. [8℄. For polynomials with nonnegative oe�ients, these lower bounds growlinearly with the maximum degree d; for example, they are 1.343, 1.67, 1.981, 2.287 for d = 1, 2, 3, 4,respetively. Our tight lower bounds are exponentially larger in the degree d.1.3 Paper OrganizationSetion 2 formally de�nes splittable ongestion games, the equilibrium onepts that we study, andthe prie of anarhy. Setion 3 de�nes �loal smoothness proofs� for games with onvex strategy sets,shows that suh proofs yield upper bounds on the prie of anarhy of orrelated equilibria, and thatthese upper bounds do not generally apply to all oarse orrelated equilibria. Setion 4 instantiatesthis general framework for the speial ase of splittable ongestion games, thereby deriving a generiPOA upper bound that is parameterized by the set of allowable resoure ost funtions. Setion 5onstruts families of splittable ongestion games and pure Nash equilibria in them to show that thePOA upper bound in Setion 4 is tight for every set of ost funtions that satis�es mild tehnialonditions. Setion 6 supplies the alulations neessary to derive losed-form expressions for theworst-ase POA in splittable ongestion games with resoure ost funtions that are polynomialswith nonnegative oe�ients (f., Table 1). Setion 7 onludes. The Appendix simpli�es andstrengthens the lower bound onstrution of Setion 5 for spei� lasses of allowable resoure ostfuntions, suh as monomials.2 The ModelSplittable Congestion Games In an (atomi) splittable ongestion game, a set E of resoureshas to be shared between n ∈ N players. Eah resoure e ∈ E has a load-dependent ost, de�nedby its ost funtion ℓe : R≥0 → R≥0. Eah player i ∈ [n] := {1, . . . , n} has a set Pi ⊆ 2E \ ∅ of basistrategies available. A frational strategy of player i is a distribution of its weight wi ∈ R>0 amongthe basi strategies available to it, i.e., player i's set of (frational) strategies is Si := {~xi ∈ R

Pi

≥0 |∑
p∈Pi

xi
p = wi}. A strategy pro�le is a vetor ~x = (~xi)i∈[n] of all players' strategies. We sometimesall a frational strategy that uses only one basi strategy a pure strategy.Resoure Cost Funtions Following standard terminology, we say a ost funtion ℓ is semi-onvex if x·ℓ(x) is onvex. For a non-dereasing funtion ℓ, this assumption is weaker than onvexity,and is almost always satis�ed in onrete appliations of ongestion games. In this work, we always5



assume that ost funtions are non-dereasing, ontinuously di�erentiable, and semi-onvex. Thelatter two onditions enable a useful haraterization of Nash equilibria; see (2), below. We say thata set of ost funtions L is non-trivial if it ontains at least one funtion that is not everywherezero, and sale-invariant if ℓ ∈ L implies that σ · ℓ(τ · x) ∈ L for every σ, τ > 0. Sale-invarianemeans that the set of allowable funtions is invariant under hanges in the units of measurement.Load Given a strategy pro�le ~x and a resoure e ∈ E, we de�ne xi
e :=

∑
p∈Pi : e∈p xi

p as the loadplayer i puts on resoure e and xe :=
∑

i∈[n] x
i
e as the total load on e. We also use the abbreviatingnotation ~xe := (xi

e)i∈[n].Cost and Equilibria Given a strategy pro�le ~x, the ost of player i is de�ned as ci(~x) :=∑
e∈E xi

e · ℓe(xe). The overall measure for the quality of a strategy pro�le ~x is its soial ost
SC(~x) :=

∑

i∈[n]

ci(~x).By a reversal of sums, we an also write SC(~x) =
∑

e∈E xe · ℓe(xe).We are interested in equilibria of the game, i.e., states where no player an redue its (expeted)ost by unilaterally deviating. To make this notion preise, we onsider the following hierarhy ofequilibrium onepts (see, e.g., [31℄ for more details and ontext). A (pure) Nash equilibrium � themost restritive onept � is a strategy pro�le ~x suh that for every player i and every frationalstrategy ~yi it holds that ci(~x) ≤ ci(~y
i, ~x−i), where ~x−i denotes the strategies hosen by the playersother than i in ~x. Pure Nash equilibria always exist in splittable ongestion games [13, 22℄.A mixed Nash equilibrium is a pro�le of mixed strategies � stohastially independent proba-bility distributions P1, . . . , Pn over S1, . . . , Sn � suh that

E~x∼P [ci(~x)] ≤ E~x∼P [ci(~y
i, ~x−i)] (1)for all players i and all frational strategies ~yi ∈ Si, where P denotes the produt distribution overstrategy pro�les indued by P1, . . . , Pn. Pure Nash equilibria are the mixed Nash equilibria in whihno player randomizes.A (not neessarily produt) distribution P over the set of strategy pro�les is a orrelated equi-librium if for all players i and all funtions δ : Si → Si it holds that

E~x∼P [ci(~x)] ≤ E~x∼P [ci(δ(~x
i), ~x−i)].Mixed Nash equilibria orrespond to the orrelated equilibria that are produt distributions.Finally, suh a distribution P is a oarse orrelated equilibrium if (1) holds for all players iand all strategies ~yi ∈ Si. Every orrelated equilibrium is a oarse orrelated equilibrium, and theonverse is false in general (e.g., Example 3.3).Charaterization of Nash Equilibria Sine ost funtions are di�erentiable and semi-onvex,a neessary and su�ient ondition for a strategy pro�le to be a (pure) Nash equilibrium is that forevery player i, the marginal ost of every used basi strategy is the same and at most that of everyunused basi strategy. That is, ∑

e∈p

ℓi
e(~xe) ≤

∑

e∈p′

ℓi
e(~xe)6



for all players i ∈ [n] and all p, p′ ∈ Pi with xi
p > 0, where ℓi

e(~xe) denotes ℓe(xe) + xi
e · ℓ′e(xe). Thisondition an alternatively be stated as a variational inequality:

∑

e∈E

ℓi
e(~xe) · (yi

e − xi
e) ≥ 0 (2)for every player i ∈ [n] and every strategy ~yi. See Harks [14, Lemma 1℄, for example, for formalproofs of these haraterizations.Prie of Anarhy The prie of anarhy of an equilibrium onept in a game is the largest ratiobetween the (expeted) soial ost of an equilibrium and that of a minimum-ost strategy pro�le.3 Loal SmoothnessThis setion presents a �loal� re�nement of the smoothness framework in [27℄. This re�nement anlead to better upper bounds on the prie of anarhy for games with onvex strategy sets, and inpartiular permits optimal upper bounds for splittable ongestion games. Bounds proved using loalsmoothness extend automatially to the orrelated equilibria of a game; but in ontrast to standardsmoothness bounds, they do not always extend to the oarse orrelated equilibria of a game.For ontext and omparison, we next review the standard de�nition of smooth games [27℄.3 Bya ost-minimization game, we mean a �nite set of players, a strategy set Si for eah player i, and aost funtion ci for eah player that maps outomes (i.e., strategy pro�les) to the nonnegative reals.A ost-minimization game is (λ, µ)-smooth if

n∑

i=1

ci(~y
i, ~x−i) ≤ λ · SC(~y) + µ · SC(~x) (3)for every pair ~x, ~y of outomes. The main extension theorem in [27℄ states that every oarse orre-lated equilibrium of a (λ, µ)-smooth game has expeted ost at most λ/(1−µ) times the ost of anoptimal outome.For the rest of this setion, we onsider ost-minimization games for whih every strategy set Siis a onvex ompat subset of some Eulidean spae R

mi and every ost funtion ci is ontinuouslydi�erentiable. The splittable ongestion games that we onsider satisfy these assumptions. Therough intuition behind loal smoothness is to require the onstraint (3) only for outomes ~y that are�arbitrarily lose to� ~x. Sine dropping onstraints inreases the set of feasible values for λ and µ,this idea has the potential to yield improved upper bounds on the POA.4 Formally, we implementthis idea as follows.3There are several preursors to and reent variations on this de�nition; see [27℄ for a detailed disussion.4To see why standard smoothness arguments annot prove optimal upper bounds on the POA of splittable on-gestion games, note that the strategy sets in a splittable game ontain those of its unsplittable ounterpart. Thus, fora �xed set of ost funtions, the requirement (3) is only more onstraining in splittable games, and the best-provableupper bound an only be larger. But, as Table 1 shows, the worst-ase POA in splittable games is generally smallerthan that in the orresponding lass of unsplittable games.
7



De�nition 3.1 (Loally Smooth Games) A ost-minimization game is loally (λ, µ)-smooth withrespet to the outome ~y if for every outome ~x,
n∑

i=1

[
ci(~x) + ∇ici(~x)T (~yi − ~xi)

]
≤ λ · SC(~y) + µ · SC(~x) . (4)In De�nition 3.1, ∇ici := (∂ci/∂xi

1, . . . , ∂ci/∂xi
mi

) denotes the gradient of ci with respet to ~xi.We next prove that if a game is loally (λ, µ)-smooth with respet to an optimal outome with
µ < 1, then the expeted ost of every orrelated equilibrium � and hene every pure and mixedNash equilibrium � is at most λ/(1 − µ) times that of an optimal outome.Theorem 3.2 (Loal Smoothness Bounds All Correlated Equilibria) Let P be a orrelatedequilibrium of a ost-minimization game. If the game is loally (λ, µ)-smooth with respet to theoutome ~y with µ < 1, then E~x∼P [SC(~x)] ≤ λ

1−µ
· SC(~y).Proof: The key laim is that

E~x∼P

[
∇ici(~x)T (~yi − ~xi)

]
≥ 0for every player i. Assuming the laim is true, we an omplete the proof by using (4) and thelinearity of expetation (twie) to derive

E~x∼P [SC(~x)] ≤
n∑

i=1

E~x∼P

[
ci(~x) + ∇ici(~x)T (~yi − ~xi)

]
≤ E~x∼P [λ · SC(~y) + µ · SC(~x)] (5)and then rearrange the terms.To prove the key laim, suppose for ontradition that E~x∼P

[
∇ici(~x)T (~yi − ~xi)

]
< 0 for someplayer i. For brevity, de�ne the deviation funtion δǫ : Si → Si by δǫ(~x

i) := (1 − ǫ) · ~xi + ǫ ·
~yi. Intuitively, we are onsidering the hypothetial deviation by player i that always replaes itsstrategy ~xi by one that is �a little loser� to ~yi. Sine strategy sets are onvex, δǫ(~x

i) is a well-de�ned strategy for every ǫ between 0 and 1. In the limit as ǫ goes to zero, E~x∼P [1
ǫ
(ci(δǫ(~x

i), ~x−i)−
ci(~x))] tends to E~x∼P [∇ici(~x)T (~yi − ~xi)], whih is stritly negative by assumption.5 Thus, thereis a su�iently small ǫ > 0 suh that E~x∼P [ci(δǫ(~x

i), ~x−i)] < E~x∼P [ci(~x)], whih ontradits theassumption that P is a orrelated equilibrium.6 �Example 3.3 (Loal Smoothness Does Not Bound All Coarse Correlated Equilibria)Consider the ost-minimization game de�ned by N = {1, 2}, S1 = S2 = [0, 1], and c1(~x) = c2(~x) =
(x1−x2)

2+ε, where ε > 0 is an arbitrarily small onstant. This idential-interest game has positive,ontinuously di�erentiable, onvex ost funtions and onvex ompat strategy sets. Let P be theuniform distribution over the strategy pro�les (0, α) and (1, 1 − α), where α ∈ (0, 1
4 ]. Elementaryalulations verify that this is a oarse orrelated equilibrium with expeted soial ost 2α2 + 2ε.Further alulations show that for every strategy pro�le ~x and every optimal strategy pro�le ~y (i.e.,5This an be formally justi�ed using the dominated onvergene theorem: Sine the strategy sets are ompat andthe ost funtions are ontinuously di�erentiable, there is a onstant M < ∞ suh that | 1

ǫ
(ci(δǫ(~x

i), ~x−i)−ci(~x))| < Mfor every strategy pro�le ~x. Hene, limǫց0

R

1

ǫ
(ci(δǫ(~x

i), ~x−i) − ci(~x)) dP (~x) =
R

∇ici(~x)T (~yi − ~xi) dP (~x).6A similar trik was used by Neyman [21℄ to prove a rather di�erent result, that every game with onvex ompatstrategy sets and a stritly onave potential funtion has a unique orrelated equilibrium.8



y1 = y2) it holds that ∑2
i=1 ∇ici(~x)(yi − xi) = −2(x1 − x2)

2 = − SC(~x) + SC(~y). Consequently,the game is loally (1, 0)-smooth with respet to every optimal strategy pro�le. The orrespondingapproximation fator of λ/(1−µ) = 1 obviously does not apply to the oarse orrelated equilibria P .Remark 3.4 (Smoothness Versus Loal Smoothness) Here is one reason why standard smooth-ness arguments extend to oarse orrelated equilibria but loal smoothness arguments do not.In the de�nition (3) of (λ, µ)-smoothness, the outome ~y is used to propose hypothetial devia-tions ~y1, . . . , ~yn for the players. These proposed deviations are independent of the strategy pro�le ~x,and for this reason the resulting approximation bound of λ
1−µ

extends to all oarse orrelated equilib-ria. In De�nition 3.1 and the proof of Theorem 3.2, however, the outome ~y indues the hypothetialdeviations (1 − ǫ)~x1 + ǫ~y1, . . . , (1 − ǫ)~xn + ǫ~yn, whih do depend on ~x. Fortunately, the proposeddeviation (1−ǫ)~xi+ǫ~yi for player i depends only ~xi and not on ~x−i, and for this reason the resultingapproximation bound of λ
1−µ

extends to all orrelated equilibria.4 A Loally Smooth Upper BoundWe now instantiate the loal smoothness framework of Setion 3 for splittable ongestion games.We �rst need a simple observation. De�ne κ(x, y) as y2/4 if x ≥ y/2 and x(y − x) otherwise.Lemma 4.1 Let n ∈ N and x, y ≥ 0. For every ~x, ~y ∈ R
n
≥0 with ∑n

i=1 xi = x and ∑n
i=1 yi = y,∑n

i=1

(
yi · xi − x2

i

)
≤ κ(x, y).Proof: Denote xmax = maxn

i=1 xi. We have
n∑

i=1

(
yi · xi − x2

i

)
≤

n∑

i=1

(yi · xi) − x2
max ≤ y · xmax − x2

max =
y2

4
−

(y

2
− xmax

)2
≤ y2

4
.For the ase where x < y/2, observe that z 7→ (y · z − z2) is inreasing on [0, y/2]. Consequently,

y · xmax − x2
max ≤ y · x − x2 = x(y − x), as required. �Next is a simple univariate ondition on ost funtions that implies loal smoothness of theorresponding lass of splittable ongestion games.Proposition 4.2 Let L be a lass of allowable ost funtions. If

y · ℓ(x) + κ(x, y) · ℓ′(x) ≤ λ · y · ℓ(y) + µ · x · ℓ(x) (6)for every ℓ ∈ L and x, y ≥ 0, then every splittable ongestion game with ost funtions in L isloally (λ, µ)-smooth with respet to every outome.
9



Proof: Consider a splittable ongestion game with ost funtions in L and two strategy pro�les ~xand ~y. Reall that ℓi
e(~xe) denotes the marginal ost ℓe(xe) + xi

e · ℓ′e(xe). We have
n∑

i=1

[
ci(~x) + ∇ici(~x)T (~yi − ~xi)

]
=

∑

i∈[n]

∑

e∈E

[
xi

e · ℓe(xe) + yi
e · ℓi

e(~xe) − xi
e · ℓi

e(~xe)
]

=
∑

e∈E

[
ye · ℓe(xe) + ℓ′e(xe) ·

∑

i∈[n]

(
yi

e · xi
e − (xi

e)
2
)]

≤
∑

e∈E

[
ye · ℓe(xe) + κ(xe, ye) · ℓ′e(xe)

] (7)
≤

∑

e∈E

[λ · ye · ℓe(ye) + µ · xe · ℓe(xe)] (8)
=λ · SC(~y) + µ · SC(~x) ,where inequalities (7) and (8) follow from Lemma 4.1 and assumption (6), respetively. �We now de�ne the quantity γ(L) as, intuitively, the best upper bound on the POA that isprovable using Theorem 3.2 and Proposition 4.2. Formally, we �rst de�ne gℓ,x,y : R<1 → R ∪ {∞}by

gℓ,x,y(µ) :=
y · ℓ(x) + κ(x, y) · ℓ′(x) − µ · x · ℓ(x)

y · ℓ(y) · (1 − µ)for every admissible triple ℓ, x, y, meaning a ost funtion ℓ ∈ L and values x ≥ 0, y > 0 with
ℓ(y) > 0. If µ < 1, then for every admissible triple ℓ, x, y, the onstraint (6) is equivalent to

gℓ,x,y(µ) ≤ λ

1 − µ
; (9)that is, gℓ,x,y(µ) is a lower bound on the best POA bound that an be proved using Proposition 4.2and a given value of µ < 1.Non-admissible triples ℓ, x, y an be ignored in Proposition 4.2. First, if ℓ is the zero funtion,inequality (6) redues to 0 ≤ 0 irrespetive of λ and µ. Seond, if ℓ is not the zero funtion, thende�ne ξ := max{y ≥ 0 | y · ℓ(y) = 0}. This maximum is guaranteed to exist beause y 7→ y · ℓ(y) isontinuous. Now if (6) holds for all y > ξ, then it also holds for y = ξ (sine both sides of (6) areontinuous in y), and hene for all y ∈ [0, ξ] (sine the left-hand side of (6) is nondereasing in y).The upshot is that, for µ < 1, the requirement of Proposition 4.2 � that is, the onjuntion ofall onstraints (6) over all triples ℓ ∈ L, x, y ≥ 0 � is equivalent to

sup
ℓ∈L

x≥0,y>0,ℓ(y)>0

gℓ,x,y(µ) ≤ λ

1 − µ
. (10)Put di�erently, for a �xed value of µ < 1, the value of λ that minimizes λ

1−µ
subjet to ondition (6)for all admissible triples is (1 − µ) times the left-hand side of (10).Given a non-trivial set of ost funtions L, the best POA bound provable using Theorem 3.2 andProposition 4.2 is the in�mum of λ

1−µ
over all hoies of (λ, µ) with µ < 1 that meet ondition (6)10



for all admissible triples. Sine ondition (6) redues to 0 ≤ µ · x · ℓ(x) if y = 0, any �nite POAbound also requires µ ≥ 0. The left-hand side of (10) is the best POA bound for a given hoieof µ, and the de�nition of γ(L) simply minimizes this POA bound over the hoies for µ:
γ(L) := inf

µ∈[0,1)
sup
ℓ∈L

x≥0,y>0,ℓ(y)>0

gℓ,x,y(µ) . (11)The de�nition of γ(L), Proposition 4.2, and Theorem 3.2 immediately imply the following.Corollary 4.3 For every non-trivial set L of ost funtions and every splittable ongestion gamewith ost funtions in L, the prie of anarhy of orrelated equilibria is at most γ(L).5 A Mathing Lower Bound for All Sale-Invariant Classes of CostFuntionsIn this setion, we show that for every non-trivial sale-invariant set of ost funtions L, the worst-ase prie of anarhy of pure Nash equilibria in splittable ongestion games with ost funtions in
L is exatly γ(L). Before giving the main onstrution in Setion 5.2, we prove in Setion 5.1 that
γ(L) an �usually� be approximated arbitrarily well by the intersetion of a non-dereasing urve
gℓ1,x1,y1

(µ) and a non-inreasing urve gℓ2,x2,y2
(µ). These two urves enode the ost funtions andresoure loads that we use in the onstrution of a worst-ase ongestion game. The �unusual� ases,in whih γ(L) must be +∞, are handled diretly in Setion 5.2.5.1 Approximating γ(L) by Two CurvesDe�ne ΓL : [0, 1) → R ∪ {∞} as the inner part of the in�mum in the de�nition (11) of γ(L):

ΓL(µ) := sup
ℓ∈L

x≥0,y>0,ℓ(y)>0

gℓ,x,y(µ) .This is the optimal POA bound that an be proved using loal smoothness (Theorem 3.2 andProposition 4.2) with the given value of µ. Figure 4 in Setion 6 provides plots of the funtions gℓ,x,yand ΓL when L ontains only linear and onstant funtions. In general, the funtion ΓL is non-inreasing on (0, µ] and non-dereasing on [µ, 1) for some µ, and unbounded as µ approahes 0or 1.Given an admissible triple ℓ, x, y, de�ne the salar hℓ,x,y by
hℓ,x,y := (y − x) · ℓ(x) + κ(x, y) · ℓ′(x) . (12)A simple alulation shows that, for every admissible triple ℓ, x, y and µ < 1, hℓ,x,y and gℓ,x,y(µ)have the same sign. Spei�ally, gℓ,x,y(µ) has the form a−µ·b

c·(1−µ) , with a, b ≥ 0, c > 0, the derivativeof whih is a−b
c·(1−µ)2

. Hene,
∂gℓ,x,y(µ)

∂µ
=

hℓ,x,y

y · ℓ(y) · (1 − µ)2
. (13)Thus, the sign of hℓ,x,y indiates whether the funtion gℓ,x,y is stritly inreasing, stritly dereasing,or onstant in µ. The values hℓ,x,y arise as �error terms� in the onstrution in Setion 5.2, andmust be arefully managed to produe a worst-ase example.11



Lemma 5.1 (Two Curves Lemma) Let L be a set of non-trivial ost funtions. Suppose there isan admissible triple ℓ, x, y with hℓ,x,y < 0. Then, for every γ̂ < γ(L), there are µ < 1 and admissibletriples ℓ1, x1, y1 and ℓ2, x2, y2 so that
gℓ1,x1,y1

(µ) = gℓ2,x2,y2
(µ) ≥ γ̂ and

sgn(hℓ1,x1,y1
) = − sgn(hℓ2,x2,y2

) .Proof: The easy ase is when there is an admissible triple ℓ, x, y suh that gℓ,x,y is a onstant funtionlarger than γ̂. In this ase, hℓ,x,y = 0, and we an use this triple for both ℓ1, x1, y1 and ℓ2, x2, y2to satisfy the requirements of the lemma. Relatively simple tight lower-bound onstrutions arepossible in this speial ase, as we show later. In the rest of this proof, we assume that no suhtriple exists.De�ne
µ∗ := inf{µ ∈ [0, 1) | ∃ admissible triple ℓ, x, y with gℓ,x,y(µ) ≥ γ̂ and gℓ,x,y is stritly inreasing } .This in�mum is taken over a non-empty set and hene µ∗ < 1. To see this, hoose ℓ ∈ L and
y > x > 0 suh that ℓ(x) > 0. Note that hℓ,x,y > 0. Then gℓ,x,y(µ) has the form a+b−µ·c

1−µ
where

0 < a ≤ 1, b ≥ 0, and 0 < c < a. Therefore, limµր1 gℓ,x,y(µ) = ∞. This shows that the onditionin the de�nition of µ∗ is met for values of µ that are su�iently lose to 1.The key laim is that there is a value µ̂ < 1 and admissible triples ℓ1, x1, y1 and ℓ2, x2, y2 sothat gℓ1,x1,y1
is stritly inreasing, gℓ2,x2,y2

is stritly dereasing, and gℓ2,x2,y2
(µ̂) ≥ gℓ1,x1,y1

(µ̂) ≥ γ̂.Then, sine both funtions are unbounded at µ = 1, they must interset at a point (µ, γ) with
µ̂ ≤ µ < 1 and γ ≥ γ̂, whih ompletes the proof.To prove the key laim, we distinguish two ases.(1) There is a stritly inreasing funtion gℓ1,x1,y1

with gℓ1,x1,y1
(µ∗) > γ̂.Sine gℓ1,x1,y1

is a ontinuous funtion, there is a value µ̂ < µ∗ so that also gℓ1,x1,y1
(µ̂) > γ̂.We must have µ∗ = 0 in this ase, as otherwise we ould have found a smaller value for µ∗.Next, by the assumption of the lemma, there is an admissible triple ℓ, x, y with hℓ,x,y < 0,whih implies 0 < y < x. De�ne ξ := max{y ≥ 0 | y · ℓ(y) = 0}. Note that gℓ,x,y(µ̂) ≥

−bµ·x·ℓ(x)
(1−bµ)·y·ℓ(y)

yցξ−−−→ ∞, sine µ̂ < 0. Denote ℓ2 = ℓ, x2 = x2, and let y2 be suh that gℓ2,x2,y2
(µ̂) ≥

gℓ1,x1,y1
(µ̂).(2) For every stritly inreasing funtion gℓ,x,y, gℓ,x,y(µ

∗) ≤ γ̂.Sine ΓL(µ∗) ≥ γ(L) > γ̂, in this ase there must be a stritly dereasing funtion gℓ2,x2,y2with gℓ2,x2,y2
(µ∗) > γ̂. Sine gℓ2,x2,y2

is ontinuous, we an hoose δ so that µ∗ + δ < 1 and
gℓ2,x2,y2

(µ∗ + δ) > γ̂. Moreover, by the de�nition of µ∗, there is a stritly inreasing funtion
gℓ1,x1,y1

with gℓ1,x1,y1
(µ∗ + δ) ≥ γ̂. Sine gℓ1,x1,y1

(µ∗) ≤ γ̂ by assumption, ontinuity andmonotoniity imply that there is a value µ̂ ∈ [µ∗, µ∗ + δ] with gℓ2,x2,y2
(µ̂) ≥ gℓ1,x1,y1

(µ̂) ≥ γ̂.
�Remark 5.2 The requirement in Lemma 5.1 that there is an admissible triple ℓ, x, y with hℓ,x,y < 0is not without loss of generality. For instane, suppose that L ontains only a funtion ℓ thatsatis�es ℓ(x) = 0 for x ∈ [0, 2] and ℓ′(x) ≥ x · ℓ(x) > 0 for all x > 2. Every admissible triplesatis�es y > 2. De�nition (12) implies that hℓ,x,y ≤ 0 only if y ≤ x. For all suh admissible triples,
hℓ,x,y = (y − x) · ℓ(x) + y2

4 · ℓ′(x) > y · ℓ(x) > 0. 12



5.2 The Constrution5.2.1 Guiding Neessary ConditionsTo onstrut a family of examples with POA approahing the upper bound proved in Theorem 3.2and Proposition 4.2, it is neessary that all of the inequalities in the upper bound � inequali-ties (5), (7), and (8) � hold with equality in the limit.The plan for our onstrution is as follows. We �rst apply Lemma 5.1 to obtain two admissibletriples ℓ1, x1, y1 and ℓ2, x2, y2. We then onstrut a family of instanes that eah ontain two groupsof resoures, one with ost funtions ℓ1 and one with ost funtions ℓ2. Eah instane will possessa Nash equilibrium ~u in whih players are indi�erent between all of their basi strategies and theload on all resoures of group i ∈ {1, 2} is xi, and yet there is another strategy pro�le ~v in whihthe load approahes yi on eah resoure of group i. Suppose now that gℓi,xi,yi
(µ) = λ

1−µ
for i = 1, 2.By the de�nition of hℓi,xi,yi

, we have
xi · ℓi(xi) = λ · yi · ℓi(yi) + µ · xi · ℓi(xi) − hℓi,xi,yi

. (14)This indiates that we need sgn(hℓ1,x1,y1
) = − sgn(hℓ2,x2,y2

) and to hoose the number of resouresin groups 1 and 2 so that in the sum of the above equations, over all resoures, the hℓi,xi,yi
-termsvanish. Then SC(~u)

SC(~v) = λ
1−µ

as needed.So far, our onstrution idea provides tightness for the variational inequality (5) and for the
(λ, µ)-smoothness inequality (8). To see how to make inequality (7) tight as well, we extend anobservation of Cominetti et al. [8, Theorem 3.1℄. Consider Lemma 4.1, whih distills inequality(7). As n → ∞, Lemma 4.1 is asymptotially tight when x1 = min{y

2 , x}, x2 = · · · = xn, and
y1 = y, y2 = · · · = yn = 0. To see this, note that if x ≥ y

2 , then x1 = y
2 , x2 = · · · = xn = 2x−y

2n−2 ,and thus ∑
i(yi · xi − x2

i ) = y2

4 − (2x−y)2

4n−4 . If x < y
2 , then x1 = x, x2 = · · · = xn = 0, and thus∑

i(yi · xi − x2
i ) = x(y − x).To take advantage of this observation in our onstrution, we ensure that for eah resoure ofgroup i, one player ontributes load min{yi

2 , xi} to the resoure in the Nash equilibrium, while allother players ontribute only in�nitesimal amounts.5.2.2 The Main ConstrutionThe following theorem is the main onstrution of worst-ase examples. The edge ase in whihLemma 5.1 does not apply is treated separately in the following setion.Theorem 5.3 (Main Constrution) Let λ, µ ∈ R with µ < 1. Let ℓ1, ℓ2 be ost funtions and
x1, x2 ≥ 0 and y1, y2 > 0. De�ne ω by ℓ2(x2) + y2

2 · ℓ′2(x2) if x2 ≥ y2/2 and ℓ′2(x2) > 0, and by
ℓ2(x2) + x2 · ℓ′2(x2) otherwise. Suppose that all of the following onditions hold:

ℓ1(x1) = ℓ2(x2) = 1 ,

gℓ1,x1,y1
(µ) = gℓ2,x2,y2

(µ) = λ
1−µ

, and
hℓ2,x2,y2

= −ω · hℓ1,x1,y1
≥ 0 .Then, there is an in�nite family of splittable ongestion games with ost funtions in {σ1ℓ1, ℓ2 :

σ1 ≥ 1} and with limiting prie of anarhy at least λ
1−µ

.13



Proof: We onstrut a family of instanes determined by two saling parameters n, p2 ∈ N. All ofthe other variables, desribed in Table 2, are funtions of n and p2. For onveniene, we also denote
hi := hℓi,xi,yi

for i ∈ {1, 2}, and we use the notation 1 := 2 and 2 := 1.Table 2: Symbols used in the desription of the lower-bound onstrutionSymbol Meaning (load refers to load in Nash equilibrium) De�nition (referenes toparagraph �The Equilibrium�)
n number of players per group free saling parameter
pi size of �optimal� strategies in group i p1 := ⌈p2 · ω⌉

p2: free saling parameter
qi size of �non-optimal� strategies in group i qi :=

⌊
pi · 2xi−yi+2hi

yi

⌋

ti number of �non-optimal� strategies for eah player in group i ti := pi·(n−1)
qi

αi load eah player from group i puts on its �optimal� strategy see (18) in ondition (3.)
βi load eah player from group i puts on its �non-optimal� strategies βi := xi−αi−n·γi

n−1

γi load eah player from group i puts on eah �optimal� strategy ofgroup i
γ1 := −h1

n

γ2 := 0

wi weight of players in group i wi := αi + ti · βi + n · γi

σi saling fator for ost funtions in group i σ1: see (16) in ondition (2.)
σ2 := 1Resoures There are two groups of resoures, with group i ∈ {1, 2} onsisting of n · pi resouresthat we denote by (i, 0), . . . , (i, n·pi−1). A good intuition is to think of two yles; see also Figure 2,whih illustrates our onstrution. Resoures in group i have the ost funtion σi · ℓi, where σ1 willbe determined later and σ2 := 1.Players and Strategies There will be two groups of players, with group i ∈ {1, 2} onsistingof n players denoted by (i, 0), . . . , (i, n − 1). Eah player (i, j) has one �optimal� strategy Pi,j,0,whih omprises pi resoures. Di�erent players' optimal strategies are disjoint, so they partition theresoures of a group. If xi ≥ yi

2 and ℓ′i(xi) > 0, then player (i, j) has also ti := pi·(n−1)
qi

�non-optimal�strategies Pi,j,1, . . . ,Pi,j,ti , eah omprising qi resoures. These non-optimal strategies are mutuallydisjoint, and also disjoint from the player's optimal strategy. Finally, players from group 2 an alsouse the �optimal� strategies for group 1, i.e., P1,0,0, . . . ,P1,n−1,0. Formally:
Pi,j,0 := {(i, j · pi), . . . , (i, (j + 1) · pi − 1)} , and
Pi,j,k := {(i, (j + 1) · pi + (k − 1) · qi), . . . ,

(i, (j + 1) · pi + k · qi − 1)} for k ≥ 1 .The weight of eah player in group i is wi := αi + ti · βi + n · γi, where γ1 := −h1

n
and γ2 := 0(sine players from group 1 annot use any resoures in group 2), and the parameters αi, βi will bedetermined below.The Equilibrium De�ne the strategy pro�le ~u as follows. Eah player (i, j) uses strategy Pi,j,0with load αi and eah of the strategies Pi,j,1, . . . ,Pi,j,ti−1 with load βi. If xi < yi

2 or ℓ′i(xi) = 0,14



S1,j,0

S1,j,1

S1,j,s1

n · p2 resources
with cost ℓ2(·)

n · p1 resources
with cost σ1 · ℓ1(·)

S2,j,1

S2,j,0

S2,j,s2 S2,j,s2 – 1

S1,j + 1,0
S1,j + 1,1

S1,j + 1,s1Figure 2: Illustration of onstrution with p1 = 3, q1 = 4 and p2 = 2, q2 = 3then βi is neessarily 0. In addition, eah player in group 2 uses eah of the n �optimal� strategiesin group 1 with load γ1.De�ne the strategy pro�le ~v as that in whih every player uses only its �optimal� strategy.We next state six onditions that formalize the high-level plan outlined in the previous setion.After their statements, we explain how to hoose values for the parameters in Table 2 so that all ofthe onditions are satis�ed simultaneously.1. In the pro�le ~u, the load on eah resoure of group i is exatly xi. That is,
αi + (n − 1) · βi + n · γi = xi ; equivalently,

βi =
xi − αi − n · γi

n − 1
. (15)2. In the pro�le ~u, eah player is faed with equal marginal osts for all its strategies, and henethe pro�le is a Nash equilibrium. The �rst ondition for players in group 2 is

p1 · σ1 ·
(
ℓ1(x1) + γ1 · ℓ′1(x1)

)
= p2 · σ2 ·

(
ℓ2(x2) + α2 · ℓ′2(x2)

)
. (16)Seond, for i = 1, 2, if xi ≥ yi

2 and ℓ′i(xi) > 0, then
pi ·

(
ℓi(xi) + αi · ℓ′i(xi)

)
= qi ·

(
ℓi(xi) + βi · ℓ′i(xi)

)
. (17)3. If ℓ′i(xi) > 0, then for eah resoure in group i there is one player who ontributes load

min{yi

2 , xi} ± o(1) while all other players ontribute load o(1).If i = 2 and x2 ≤ y2

2 , there is nothing to show beause α2 = x2. (For i = 1, the assumptionthat h1 ≤ 0 implies that x1 > y1 > y1

2 .) Otherwise, yi

2 ≤ xi and, realling the assumptionthat ℓi(xi) = 1, we an plug in ℓ′i(xi) = 4(xi−yi+hi)
y2

i

and (15) into (17) to obtain
αi =




y2

i ·
(

qi

pi
− 1

)

4 · (xi − yi + hi)
+

qi · (xi − n · γi)

(n − 1) · pi



 ·
[
1 +

qi

(n − 1) · pi

]−1

. (18)15



The desired limits αi
n,p2→∞−−−−−→ yi

2 and βi
n,p2→∞−−−−−→ 0 hold provided

qi

pi

p2→∞−−−−→ 2xi − yi + 2hi

yi
, whih holds if we set

qi :=

⌊
pi ·

2xi − yi + 2hi

yi

⌋
. (19)4. In the strategy pro�le ~v, the load on every resoure in group i is yi+o(1). That is, wi

n,p2→∞−−−−−→
yi.We �rst make some preliminary alulations. If x2 ≥ y2

2 and ℓ′2(x2) > 0, then
n · γ1 = −h1 =

h2

ω
=

h2 · y2

y2 +
y2

2

2 · ℓ′2(x2)

=
y2

2
· 2h2

2x2 − y2 + 2h2
.

(20)If, on the other hand, x2 ≤ y2

2 or ℓ′2(x2) = 0, then
n · γ1 = −h1 =

h2

ω

=
(y2 − x2) · (ℓ2(x2) + x2 · ℓ′2(x2))

ℓ2(x2) + x2 · ℓ′2(x2)

= y2 − x2 .Now, onsider i ∈ {1, 2}. Reall that our assumption that h1 ≤ 0 implies that x1 ≥ y1.
• If ℓ′1(x1) = 0, then w1 = α1 = x1 − n · γ1 = x1 + h1 = x1 + (y1 − x1) = y1.
• If x2 ≤ y2

2 or ℓ′2(x2) = 0, then w2 = α2 + n · γ1 = x2 + (y2 − x2) = y2.
• Otherwise, xi ≥ yi

2 and ℓ′i(xi) > 0. Using equations (15) and (19), and also equation (20)for the i = 2 ase, we have
wi = αi + ti · βi + n · γi

= αi +
pi

qi
· (xi − αi − n · γi) + n · γi

n,p2→∞−−−−−→ yi

2
·
(

1 +
2xi − yi − 2n · γi

2xi − yi + 2hi

)
+ n · γi

= yi .5. The soial ost of the Nash equilibrium ~u is ( λ
1−µ

− o(1)) times that of the pro�le ~v.Using ondition 1, write SC(~u) =
∑

i=1,2 n ·pi ·σi ·xi ·ℓi(xi). The assumption that gℓi,xi,yi
(µ) =

λ
1−µ

for i = 1, 2 means, as in (14), that
SC(~u) = λ · Φ + µ · SC(~u) + ∆ ,16



where Φ =
∑

i=1,2 n · pi · σi · yi · ℓi(yi) and ∆ = −∑
i=1,2 n · pi · σi · hi. That is,

SC(~u)

Φ
=

λ

1 − µ
+

∆

Φ · (1 − µ)
.Assuming ondition 4, we have Φ

n,p2→∞−−−−−→ SC(~v). Thus, the present ondition follows pro-vided ∆
Φ

n,p2→∞−−−−−→ 0. Realling that h2 = −ω · h1, if we set p1 ≈ p2 · ω, then
|∆| ≤ n · p2 · h2 · |σ2 − σ1| .Consequently, ∆

Φ

n,p2→∞−−−−−→ 0 provided σ1
n,p2→∞−−−−−→ 1. (Reall that always σ2 = 1.) We hekthat this is indeed the ase below.6. All parameters are feasible, i.e.,

n, pi, qi, ti ∈ N, αi, βi, γi ≥ 0, σi > 0 .We now argue that all six onditions an indeed be satis�ed simultaneously. Choose values for thesaling parameters n, p2 ∈ N. Set γ1 = −h1

n
and γ2 = 0. Next set p1 aording to ondition 5(as ≈ p2 · ω), qi aording to (19) in ondition 3, ti as ≈ pi(n − 1)/qi, and αi, βi to satisfy thesimultaneous equations (15) and (17). (If xi < yi

2 or ℓ′i(xi) = 0, then equation (17) is replaed by theequation βi = 0.) Set σ2 = 1 and σ1 aording to (16) of ondition 2. Now, onditions 1�3 imply alsoondition 4, as shown above. Condition 5 redues to showing that σ1
n,p2→∞−−−−−→ 1. After solving for σ1in (16), this follows sine γ1

n,p2→∞−−−−−→ 0 and p2

p1

n,p2→∞−−−−−→ 1
ω
by de�nition, α2

n,p2→∞−−−−−→ min{y2

2 , x2}by ondition 3, and using the de�nition of ω. Finally, onsider the non-negativity onstraints inondition 6. These hold for γ1, γ2 by de�nition and for α1, α2 by ondition 3. For βi, we an assumethat xi ≥ yi

2 and ℓ′i(xi) > 0, as otherwise βi = 0. Sine γ2 = 0, equation (15) and ondition 3 implythat β2 ≥ 0. For i = 1, we have x1−α1
n,p2→∞−−−−−→ x1− y1

2 and n·γ1 = −h1 = x1−y1− y2

1
·ℓ′

1
(x1)

4 < x1− y1

2 ;inspeting (15) shows that β1 ≥ 0. This veri�es the onstrution and ompletes the proof. �Remark 5.4 (Network Congestion Games) Sine eah player's basi strategies in this on-strution are disjoint, these ongestion games an be represented as (direted) network ongestiongames: orient both yles, give eah player its own soure and sink verties (outside the yles),and paths orresponding to its basi strategies.5.2.3 An Edge CaseBefore ombining our results into a generally appliable lower bound, we need to give a relatedonstrution for the sets of ost funtions L with no triples ℓ, x, y suh that hℓ,x,y < 0. The nextlemma shows that, in this ase, there is a family of games that admit strategy pro�les with a per-resoure ost approahing zero and Nash equilibria with positive per-resoure ost (bounded awayzero). Thus, the worst-ase POA is +∞ with respet to suh sets of ost funtions. This speialase does not require sale-invariane.Lemma 5.5 Let ℓ be a ost funtion so that hℓ,x,y > 0 for every admissible triple ℓ, x, y. Thereis a sequene of ongestion games using only the ost funtion ℓ and with in�nite limiting prie ofanarhy. 17



Proof: Clearly, ℓ is not the zero funtion. Moreover, ξ := max{x | ℓ(x) = 0} > 0 (and this is wellde�ned). To see this, suppose for ontradition that ℓ(y) > 0 for all y > 0. Then, for �xed x > 0and arbitrary y > 0, we have hℓ,x,y = (y−x) ·ℓ(x)+κ(x, y) ·ℓ′(x)
yց0−−−→ −x ·ℓ(x) < 0, a ontradition.We give a sequene of instanes similar to but simpler than the lower-bound onstrution inTheorem 5.3. There is only one group of resoures and players. As in the previous onstrution, weleave open several parameters to enable limiting arguments:

• The number of players and resoures is an odd number n.
• The load on eah resoure in the Nash equilibrium is denoted by x̂ and will approah 3ξ

2 .
• The load eah player puts on its �optimal� strategy in the Nash equilibrium is α and willapproah ξ

2 .All other parameters are de�ned as follows.
• The size of the �optimal� strategy of eah player is p = 1.
• The size of the �non-optimal� strategy of eah player is q = 2.
• Eah player has t = p·(n−1)

q
non-optimal strategies.

• The load eah player puts on eah of its �non-optimal� strategies is β = bx−α
n−1 .

• The load on eah resoure in the optimum is equal to the weight of eah player, whih is
w = α + t · β.For a given hoie of x̂ and α, the orresponding strategy pro�le is a Nash equilibrium if thevariational inequality (2) � orresponding to ondition (17) in Theorem 5.3 � holds with equality:

ℓ(x̂) + α · ℓ′(x̂) = 2 ·
(

ℓ(x̂) +
x̂ − α

n − 1
· ℓ′(x̂)

)
, i.e., ℓ′(x̂) =

ℓ(x̂)

α
+

2 · (x̂ − α)

α · (n − 1)
· ℓ′(x̂) . (21)Every triple ℓ, x, y with x ≥ y > ξ is admissible and, by assumption, satis�es hℓ,x,y = (y−x) · ℓ(x)+

y2

4 · ℓ′(x) > 0. Due to ontinuity of hℓ,x,y in y, the previous inequality also holds (not neessarilystritly) for y = ξ; that is, ℓ′(x) ≥ 4
ξ2 · (x− ξ) · ℓ(x). Hene, for every x > 3ξ

2 we have ℓ′(x) > 2
ξ
· ℓ(x).By the previous observation, for every δ > 0 we an hoose x̂ ∈ [3ξ

2 , 3ξ
2 +δ) so that ℓ′(x̂) > 2

ξ
·ℓ(x̂).Thus, we an hoose n ∈ N large enough so that

ℓ′(x̂) >
2 · ℓ(x̂)

ξ
+

4 · (x̂ − ξ
2 )

ξ · (n − 1)
· ℓ′(x̂) .Sine the right-hand side of (21) is ontinuous and monotonially dereasing in α, and unboundedfor α ց 0, we an �nd α ∈ (0, ξ

2) so that (21) holds with equality.Reall that the weight of eah player is
w = α + t · β = α +

p · (n − 1)

q
· x̂ − α

n − 1
=

x̂ + α

2
<

2x̂ + ξ

4
< ξ +

δ

2
.Consequently, we an �nd a sequene of games so that the load on eah resoure in some Nash equi-librium approahes 3ξ

2 , while the load on eah resoure in a di�erent strategy pro�le approahes ξ.Sine ℓ(3ξ
2 ) > 0, ℓ(ξ) = 0, and ost funtions are ontinuous, the POA grows without bound as δ → 0and n → ∞. � 18



5.2.4 Putting It All TogetherWe an now prove the main result of this setion.Corollary 5.6 (Tight Lower Bound) Let L be a sale-invariant set of ost funtions. Then,the worst-ase prie of anarhy in atomi splittable ongestion games with ost funtions in L isexatly γ(L).Proof: The upper bound is due to Corollary 4.3. For the lower bound, the speial ase in whih
L does not admit any triples ℓ, x, y with hℓ,x,y < 0 is addressed by Lemma 5.5. In the rest of theproof, we assume that there is an admissible triple ℓ, x, y with hℓ,x,y < 0.We show that, for any two triples ℓ1, x1, y1 and ℓ2, x2, y2 produed by Lemma 5.1, there aretriples ℓ̂1, x̂1, ŷ1 and ℓ̂2, x̂2, ŷ2 that an be used in the lower-bound onstrution of Theorem 5.3 andthat indue the same funtions gℓ,x,y.We start with a simple observation. Let ℓ be a ost funtion and σ, τ > 0. De�ne ℓ̂(x) := σ·ℓ(τ ·x),whih belongs to L by sale-invariane. Then, ℓ̂′(x) = σ · (ℓ(τ · x))′ = σ · τ · ℓ′(τ · x). Consequently,
gbℓ,x,y

= gℓ,τ ·x,τ ·y and τ · hbℓ,x,y
= σ · hℓ,τ ·x,τ ·y.We an assume that ℓi(xi) > 0 beause otherwise gℓi,xi,yi

= 0. This annot happen providedwe use γ̂ > 1 in Lemma 5.1. Now set ℓ̂2(x) := 1
ℓ2(x2) · ℓ2(x), x̂2 = x2, ŷ2 = y2. De�ne ω as inTheorem 5.3 in terms of ℓ̂2, x̂2, ŷ2. Let

τ :=
−hℓ1,x1,y1

· ω
ℓ1(x1) · hbℓ2,bx2,by2

.Let ℓ̂1(x) := 1
ℓ1(x1) · ℓ1(τ · x), x̂1 = x1

τ
, ŷ1 = y1

τ
. Then

hbℓ2,bx2,by2

=
−hℓ1,x1,y1

· ω
ℓ1(x1) · τ

= −hbℓ1,bx1,by1

· ω ,as needed. �5.2.5 Example: Cubi Cost FuntionsWe give an example of our lower-bound onstrution when L onsists of the ubi monomials {ax3 :
a ≥ 0}. Monomial ost funtions are a �luky ase� where, in Theorem 5.3, we an take hℓi,xi,yi

= 0.In suh ases, similarly to the onstrution in Lemma 5.5, only one yle of resoures is needed andthe sale-invariane hypothesis an be dropped.Consider the admissible triple ℓ, x, y with ℓ(z) = z3, x = 3
2 , y = 1. It is easy to verify that

hℓ,x,y = (y − x) · ℓ(x) +
y2

4
· ℓ′(x)

= x2 ·
(

(y − x) · x +
3

4

)
= 0 ;the funtion gℓ,x,y is identially equal to (3

2 )4 = 5.0625. Choose λ, µ ∈ (0, 1) suh that gℓ,x,y(µ) =
λ

1−µ
.The family of instanes is as follows. There are n players and n resoures, eah with ostfuntion ℓ. The players' �optimal� strategies have size p = 1, whereas their �non-optimal� strategies19



have size q = 2. Eah player thus has t = n−1
2 �non-optimal� strategies. We onsider the strategypro�le where every player puts load α = [12 + 3

n−1 ] · [1 + 2
n−1 ]−1 = n+5

2·(n+1) on its �optimal� and
β = x−α

n−1 = 1
n+1 on eah of its �non-optimal� strategies. Then:1. The load on eah resoure is exatly

α + (n − 1) · β = x .2. Eah player is faed with equal marginal osts for all its strategies, beause
p ·

(
ℓ(x) + α · ℓ′(x)

)
= x2 · (x + 3 · α)

= x2 · 6n + 18

2 · (n + 1)

= x2 · 2 · (x + 3 · β)

= q ·
(
ℓ(x) + β · ℓ′(x)

)
.3. For eah resoure, there is one player who puts load α = 1

2 ± o(1) on it whereas all otherplayers put load β = o(1) on it.4. In the �optimal� strategy pro�le, where eah player only uses its �optimal� strategy, the loadon any resoure is 1 + o(1), beause eah player has weight
α + t · β = α +

n − 1

2 · (n + 1)

n→∞−−−→ 1 .5. The soial ost is ( λ
1−µ

−o(1)) times that in the �optimal� strategy pro�le. This holds beauseeah resoure ontributes ost
x · ℓ(x) = λ · y · ℓ(y) + µ · x · ℓ(x) ,where the equality is due to gℓ,x,y(µ) = λ

1−µ
and the de�nition of hℓ,x,y.Together with the upper bound in Setion 6, this onstrution shows that the prie of anarhyfor splittable ongestion games with polynomial ost funtions of degree at most 3 is exatly (3

2)4 =
5.0625.5.2.6 Constrution with Singleton StrategiesContinuing with the �luky ase� of the previous setion (inluding monomial ost funtions), wereimpose the sale-invariane assumption and give a tight lower-bound onstrution that uses onlysingleton strategies.Theorem 5.7 Let λ ∈ R, µ < 1. Moreover, let L be a sale-invariant set of ost funtions, ℓ ∈ L,and x ≥ y > 0. Suppose that

gℓ,x,y(µ) = λ
1−µ

and hℓ,x,y = 0 .Then, there is an in�nite family of splittable ongestion games with singleton strategies, with ostfuntions in L, and with limiting prie of anarhy at least λ
1−µ

.20



Resource Level: 1

Player Weights: y · τ
2 (x−

y

2
) · τ l

l – 1

y · τ
l

0

y · τ
1y

2

2 lFigure 3: Illustration of onstrution with singleton strategiesProof: We de�ne a family of singleton ongestion games, represented by full k-ary trees of height l.To simplify our presentation, assume that the root node and eah leaf node have self-loops. Then,eah edge orresponds to a player, and eah node in the tree orresponds to a resoure. Thestrategies of a player are its (at most two) inident nodes. Figure 3 illustrates the onstrution.Let σ, τ > 0 be values to be determined later (dependent on k and l). The ost funtion forresoures at level j is ℓj(z) := 1
σj · ℓ( z

τ j ). Note that the root resoure has ost funtion ℓ0 = ℓ. Wesay a player is in level j ∈ [n] if its edge is between resoure levels j − 1 and j. The weight of eahplayer in level j is y · τ j . The player who only has the root resoure as a strategy has weight y
2 , andthe players who only have a leaf resoure as a strategy have weight (x − y

2 ) · τ l.We �rst show that we an hoose σ and τ suh that the pro�le in whih eah player splits itsweight equally (i.e., eah player on level j puts load y
2 · τ j on both of its strategies) is a Nashequilibrium. Let τ := 2x−y

y·k , so that the equilibrium load on eah resoure of level j ∈ [l]0 is
y
2 · τ j + k · y

2 · τ j+1 = x · τ j. We need that eah player faes equal marginal osts on eah of itsstrategies, i.e., for players on all levels j ∈ [l] that
ℓj−1(x · τ j−1) +

(y

2
· τ j

)
· ℓ′j−1(x · τ j−1) = ℓj(x · τ j) +

(y

2
· τ j

)
· ℓ′j(x · τ j) .By plugging in that ℓj(z) = 1

σj · ℓ( z
τj ) and ℓ′j(z) = 1

σj ·τ j · ℓ′( z
τ j ), this is equivalent to

ℓ(x) +
y

2
· τ · ℓ′(x) =

1

σ
·
[
ℓ(x) +

y

2
· ℓ′(x)

]
,i.e.,

σ =
ℓ(x) + y

2 · ℓ′(x)

ℓ(x) + y
2 · τ · ℓ′(x)

k→∞−−−→ 1 +
y

2
· ℓ′(x)

ℓ(x)
=

2x − y

y
,where the last equality follows from hℓ,x,y = 0. Consequently, k · τ · 1

σ

k→∞−−−→ 1, and the soial ostontributed by the kj resoures at level j ∈ [l]0 is kj · x · τ j · ℓ(x)
σj

k→∞−−−→ x · ℓ(x).Now onsider the pro�le where eah player uses only the strategy further away from the root.Reasoning as above, the soial ost ontributed by the kj resoures at level j ∈ [l − 1] approahes
y · ℓ(y). The root resoure on level 0 ontributes y

2 · ℓ(y
2 ), and level l ontributes kl · (x + y

2 ) · τ l ·
ℓ(x+ y

2
)

σl

k→∞−−−→ (x + y
2 ) · ℓ(x + y

2 ), whih is a onstant independent of l.Consequently, as l → ∞ and k → ∞ suitably quikly in l,the ratio of the soial ost in the Nashequilibrium and that of the other pro�le approahes x·ℓ(x)
y·ℓ(y) = gℓ,x,y(µ) = λ

1−µ
. �21



6 Polynomial Cost FuntionsThis setion gives a losed-form expression for the exat prie of anarhy � that is, analytiallyevaluates the parameter γ(L) � when the ost funtions are polynomials with degree at most d ∈ Nand non-negative oe�ients. For d ∈ N, let Pd denote this set of ost funtions. Also, we write Xdto denote the monomial funtion x 7→ xd, and we let Md := {Xd,Xd−1, . . . ,X0} be the set of allmonomials of degree at most d. We de�ne Ψd as the unique positive real x with xd + d·xd−1

4 = xd+1,that is, as Ψd := 1
2(1 +

√
d + 1). To save work, we let g∗ℓ,x,y denote gℓ,x,y, as de�ned in Setion 4,exept with κ(x, y) replaed by y2

4 . We similarly de�ne γ∗(L) (f., (11)). h∗
ℓ,x,y (f., (12)), and Γ∗

L.We start with three lemmas to simplify γ∗(Pd). In the end, it will turn out that γ(Pd) = γ∗(Pd).The point of the next lemma is to give a losed-form formula for the funtion µ 7→ supx≥0 g∗
Xd,x,1

(µ).Lemma 6.1 Let µ ∈ (0, 1) and d ≥ 1. De�ne g : R≥0 → R by g(x) := xd + d·xd−1

4 −µ ·xd+1. Then,
g has exatly one global maximum, at

ξ =
d +

√
d2 + d · µ · (d2 − 1)

2µ · (d + 1)
.Moreover, ξ is the only loal extremum on R>0.Proof: We �rst show that x = 0 is not a global maximum. If d = 1, then g( 1

2µ
) = 1

2 + 1
4µ

> 1
4 = g(0).If d > 1, then g(Ψd) = (1 − µ) · Ψd > 0 = g(0). Sine limx→∞ g(x) = −∞, g is ontinuous, andwe know that g attains values stritly larger than g(0) somewhere on R>0, it su�es to show thatthere is a unique loal extremum on R>0. For x > 0, the neessary �rst-order ondition for a loalextremum is

g′(x) = dxd−2

(
x +

d − 1

4

)
− µ(d + 1)xd = 0 . (22)Indeed, ξ is the unique positive value for x that satis�es (22). �The next lemma shows that we an restrit attention to monomial ost funtions and admissibletriples ℓ, x, y in whih y = 1.Lemma 6.2 Let d ∈ N. Then,

γ∗(Pd) = γ∗(Md) = inf
µ∈(0,1)

sup
ℓ∈Md
x≥0

g∗ℓ,x,1(µ) .Proof: We an rewrite
γ∗(Pd) = inf

(λ,µ)∈R×(0,1)

{
λ

1 − µ

∣∣∣∣ ∀ℓ ∈ Pd, x ≥ 0, y > 0 : λ ≥ y · ℓ(x) + y2·ℓ′(x)
4 − µ · x · ℓ(x)

y · ℓ(y)

}
. (23)The de�ning ondition in (23) holds for a given (λ, µ) if and only if it holds with ℓ restrited to Md.This implies the �rst equality in the lemma statement. Moreover, when ℓ is onstant (and non-zero),22
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Figure 4: The funtions gℓ,x,y when ℓ is the identity or a onstant funtion, and the orrespondingupper-envelope funtion (the thik line). Preisely, the envelope funtion here turns out to be
µ 7→ 1+µ

4·µ·(1−µ) .the inequality boils down to λ ≥ 1 − µ · x
y
for all x ≥ 0 and y > 0. Consequently, this de�ningondition is equivalent to

∀r ∈ [d], x ≥ 0, y > 0 : λ ≥ y · xr + y2·r·xr−1

4 − µ · xr+1

yr+1
and λ ≥ 1 . (24)In (24), the values x

y
and 1 yield the same inequality as the values x and y. We an therefore�x y = 1 without loss of generality. Consequently,

γ∗(Pd) = inf
(λ,µ)∈R×(0,1)

{
λ

1 − µ

∣∣∣∣ ∀r ∈ [d], x ≥ 0 :
λ

1 − µ
≥ gXr ,x,1(µ) and λ

1 − µ
≥ gX0,0,1(µ)

}

= inf
µ∈(0,1)

sup
ℓ∈Md
x∈R≥0

g∗ℓ,x,1(µ) .

�Lemma 6.3 Let d ∈ N. Then:1. γ∗({Xd}) = Ψd+1
d .2. γ∗({X1,X0}) = 3

2 . If d ≥ 2, then γ∗({Xd,X0}) = γ∗({Xd}) = Ψd+1
d .3. If L is one of {Xd} or {Xd,X0}, then γ(L) = γ∗(L).4. γ(Pd) = γ({Xd,X0}).Proof: For x > 0 de�ne

µx :=
d · (4x + d − 1)

(d + 1) · 4x2
.23



By onstrution, every ξ ful�lls the neessary �rst-order ondition (22) for loal extrema of thefuntion x 7→ g∗
Xd,x,1

(µξ). By Lemma 6.1, we get that ξ is even a global maximum on R≥0. Hene,
g∗
Xd,ξ,1

(µξ) = maxx∈R≥0
{g∗

Xd,x,1
(µξ)}.1. Fix ξ := Ψd. Note that Ψ2
d = Ψd + d

4 and hene
µξ =

d · (4Ψd + d − 1)

(d + 1) · (4Ψd + d)
∈ (0, 1) .So far, we have shown that γ∗({Xd}) ≤ g∗

Xd,ξ,1
(µξ) = Ψd+1

d , with the equality holding by thede�nition of Ψd. Sine h∗
Xd,ξ,1

= 0, g∗
Xd,ξ,1

is a onstant funtion and Γ∗
{Xd}(µ) ≥ Ψd+1

d forevery µ ∈ (0, 1). Thus, γ∗({Xd}) = Ψd+1
d .2. Consider �rst the ase d = 1. Fix ξ := 3

2 and note that µξ = 1
3 ∈ (0, 1). We have that

g∗
X0,0,1(

1
3 ) = 3

2 = g∗
Xd,ξ,1

(1
3). Beause g∗

X0,0,1 and g∗
Xd,ξ,1

are inreasing and dereasing fun-tions, respetively, γ∗({Xd,X0}) = 3
2 .Otherwise, if d ≥ 2, hoose ξ := Ψd as in the �rst step. It holds that

g∗Xd,ξ,1(µξ) = Ψd+1
d =

(
1 +

√
d + 1

2

)d+1

>
2 · (d + 1)

d + 1 +
√

d + 1
·
(

1 +
√

d + 1

2

)2

=
1

1 − µξ

= g∗X0,0,1(µξ) .As in step 1, we have γ∗({Xd,X0}) = Ψd+1
d .3. For x < y

2 , we have κ(x, y) ≤ y2

4 . Therefore, for every admissible triple ℓ, x, y we have
gℓ,x,y ≤ g∗ℓ,x,y pointwise, with equality holding whenever x

y
≥ 1

2 . Hene, when ξ ≥ 1
2 , wehave gXd,ξ,1(µξ) = maxx∈R≥0

{gXd ,x,1(µξ)}. Sine the arguments above use values of ξ largerthan 1
2 , they extend to the omputation of γ.4. The derivative of gXr ,ξ,1(µ) with respet to r is

∂

∂r

ξr + r·ξr−1

4 − µ · ξr+1

1 − µ

=
ξr−1

4(1 − µ)
+ ln(ξ) · gXr ,ξ,1(µ) ,whih is positive if ξ > 1 and gXr ,ξ,1(µ) ≥ 0. Consequently, if ξ > 1, as it is in all omputationsabove, then

gXd,ξ,1(µξ) = max
r∈[d]

x∈R≥0

{gXr ,x,1(µξ)} .
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� Corollary 5.6, Lemma 6.2, and Lemma 6.3 immediately imply:Corollary 6.4 The following exat bounds on the worst-ase prie of anarhy in splittable onges-tion games with ost funtions in L hold.1. If L is the set of linear funtions, then γ(L) = Ψ2
1 ≈ 1.457.2. If L = P1, then γ(L) = 3

2 > Ψ2
1.3. If L = Pd and d ∈ N≥2, then γ(L) = Ψd+1

d = (1+
√

d+1
2 )d+1.7 Future DiretionsWe onlude with three proposals for further work. First, it would be interesting to disovermore appliations of the loal smoothness framework de�ned in Setion 3. One suh appliationwas given reently by Bhawalkar et al. [5℄, who used the framework to obtain tight bounds onthe POA in a family of opinion formation games. In these games, eah player i has an intrinsiopinion si ∈ [0, 1] and expresses a (possibly di�erent) opinion zi ∈ [0, 1]. A player is interested bothin how similar its expressed opinion is to its intrinsi one, and how its expressed opinion omparesto those expressed by other players. Formally, the ost to player i in the strategy pro�le ~z has theform gi(zi − si) +

∑
j 6=i fij(zi − zj), where gi and fij are given ost funtions. Bindel et al. [6℄ werethe �rst to study the POA in suh games, and they give exat worst-ase bounds when gi(x) = x2and fij(x) = wijx

2, where wij is a player pair-spei� weight. Bhawalkar et al. [5℄ used the loalsmoothness framework to obtain tight POA bounds for all onvex ost funtions.Seond, while the present work obtains tight POA bounds for the orrelated equilibria of split-table ongestion games, the analogous question for oarse orrelated equilibria remains open. Weshowed that loal smoothness bounds do not extend to oarse orrelated equilibria in general (Ex-ample 3.3), but we have not found an analogous example in a splittable ongestion game. Veryreently, von Falkenhausen and Roughgarden [30℄ showed that, in splittable ongestion games witha�ne ost funtions, every oarse orrelated equilibrium is a mixture of Nash equilibria and henethe POA bound of 3
2 applies. With nonlinear ost funtions, however, there are splittable ongestiongames that possess oarse orrelated equilibria that are ostlier than all of their orrelated equilib-ria [30℄. The examples in [30℄ do not prove that the worst-ase POA for oarse orrelated equilibriais larger than that for orrelated equilibria, however.Finally, it would be interesting to resolve the worst-ase POA in splittable ongestion games inwhih every player has the same set of basi strategies. In symmetri games, where every player alsohas the same weight, the worst-ase POA is idential to that in nonatomi ongestion games [8℄.With idential basi strategies but di�erent player weights, it remains open to improve over theupper bounds of [8, 14℄ and the present work for general splittable ongestion games, or over thelower bounds of [29℄ for nonatomi ongestion games.Aknowledgments We thank Kshipra Bhawalkar, Martin Gairing, Tobias Harks, and Uri Nadavfor helpful disussions, and the anonymous SODA and JET reviewers for a number of useful remarks.25
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