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A Representative Result

Example Theorem: [Syrgkanis/Tardos 13] (improving
[Hassidim/Kaplan/Nisan/Mansour 11]) Suppose m items are
sold simultaneously via first-price single-item auctions:

 for every product distribution over submodular
bidder valuations (independent, not necessarily
identical), and

- for every (mixed) Bayes-Nash equilibrium,

expected welfare of the equilibrium is within 63% of the
maximum possible.

(matches best-possible algorithms!)
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The Price of Anarchy

Network with 2 players:




The Price of Anarchy

Nash Equilibrium:

cost = 14+14 =28




The Price of Anarchy

Nash Equilibrium: To Minimize Cost:

cost = 14+14 =28 cost =14+10 =24

Price of anarchy (POA) = 28/24 = 7/6.

« if multiple equilibria exist, look at the worst one
+ [Koutsoupias/Papadimitriou 99]
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What Do POA Bounds Look Like?

* n players, each picks a strategy s
 player iincurs a cost Ci(s)

Objective function: cost(s) := Z; Ci(s)
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What Do POA Bounds Look Like?

* n players, each picks a strategy s
 player iincurs a cost Ci(s)

Objective function: cost(s) := Z; Ci(s)
To Bound POA: (let s =a Nash eq; s =optimal)

cost(s) = 2.C(s) [defn of cost]
< 2,C(s,s;) [s aNash eq]

“baseline” strategies
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What Do POA Bounds Look Like?

Suppose: we prove that (forA>0; u<1)
> Ci(s’,s;) = Aecost(s’) + pecost(s) [(¥)]
Implies: cost(s) = 2. Ci(s’,s,) [s a Nash eq]
< Aecost(s’) + pecost(s) [by (*)]

So: POA (of pure Nash equilibria) = A/(1-p).




Canonical Example

Claim [Christodoulou/Koutsoupias 05] (see also [Awerbuch/Azar
Epstein 05]) worst-case POA in routing games with
affine cost functions is 5/2.

 for all integers y,z: y(z+1) =< (5/3)y? + (1/3)z?

« s0:ay(z+1) + by =< (5/3)[ay? + by] + (1/3)[az? + bZ]
for all integers y,z and a,b =0

¢ 50: 2, [a,(X,+1) +Db)x.]=(5/3) 2, [(aX, + b.)x, ]
+ (1/3) ze [(aexe + be)xe]

« s0:2,C(s",s.) = (5/3)ecost(s’) + (1/3)*cost(s)




Smooth Games

Definition: [Roughgarden 09] A game is (A, u)-smooth w.r.t.
baselines s’ if, for every outcome s (A>0; u<1):

>.Ci(s’,s;) = Aecost(s’) + pecost(s) [(*)]




Smooth Games

Definition: [Roughgarden 09] A game is (A,u)-smooth w.r.t.
baselines s’ if, for every outcome s (A>0; u<1):

>.Ci(s’,s;) = Aecost(s’) + pecost(s) [(*)]
Implies: cost(s) = 2, C,(s",,s.) [s a Nash eq]
< Aecost(s’) + pecost(s) [by (*)]

So: if (A\,un)-smooth w.r.t. optimal outcome, then POA
(of pure Nash equilibria) is at most A/(1-p).

(using (*) only in the special case where s = equilibrium)




POA Bounds Without Convergence

Meaning of a POA bound: ifthe game is at an
equilibrium, then outcome is near-optimal.

Problem: what if can’t reach an equilibrium?
* non-existence (pure Nash equilibria)

* intractability (mixed Nash equilibria)
[Daskalakis/Goldberg/Papadimitriou 06], [Chen/
Deng/Teng 06],[Etessami/Yannakakis 07]

Worry: fail to converge, POA bound won’t apply.




Learnable Equilibria

Fact: simple strategies converge quickly to more
permissive equilibrium sets.

 correlated equilibria: [Foster/Vohra 97], [Fudenberg/
Levine 99], [Hart/Mas-Colell 00], ...

« coarse/weak correlated equilibria (of [Moulin/Vial 78]):
[Hannan 57], [Littlestone/Warmuth 94], ...

Question: are there good “robust” POA bounds, which
hold more generally for such “easily learned” equilibria?
[Mirrokni/Vetta 04], [Goemans/Mirrokni/Vetta 05], [Awerbuch/Azar/

Epstein/Mirrokni/Skopalik 08], [Christodoulou/Koutsoupias 05],
[Blum/Even-Dar/Ligett 06], [Blum/Hajiaghayi/Ligett/Roth 08]




A Hierarchy of Equilibria

easy to
compute/
learn

no regret

correlated eq
hard to

compute

need not
exist

Recall: POA determined by worst equilibrium
(only increases with the equilibrium set).




An Out-of-Equilibrium Bound

Theorem: [Roughgarden 09] if game is (A, l)-
smooth w.r.t. an optimal outcome, then the
average cost of every no-regret sequence is
at most

[N/(1-1)] * cost of optimal outcome.

(the same bound as for pure Nash equilibrial)




No-Regret Sequences

Definition: a sequence s1,s2,...,sT of outcomes of a
game is no-regret if:

- for each i, each (time-invariant) deviation q;:

(1/T) 2,Ci(s") = (1/T) 2,Ci(q;,s%;) [+ 0(1)]

(will ignore the “o(1)” term)




Smooth => No-Regret Bound

 notation: s1,s2,...,sT = no regret; s" = optimal
Assuming (A,l)-smooth:

>, cost(s!) =22 C,(s" [defn of cost]
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Assuming (A,[1)-smooth:
>, cost(s!) =22 C,(s" [defn of cost]

=23, [C(s",s%) + Ayl [A = Ci(sh)- Ci(s';,s')]




Smooth => No-Regret Bound

 notation: s1,s2,...,sT = no regret; s" = optimal
Assuming (A,[1)-smooth:
>, cost(s!) =22 C,(s" [defn of cost]

=22, [Ci(s,sh) + A [A=Ci(sh)- Ci(s',s")]

< 3, [Aecost(s’) + pecost(s!)] + 2, %, A; [smooth]




Smooth => No-Regret Bound

 notation: s1,s2,...,sT = no regret; s" = optimal
Assuming (A,u)-smooth:
>, cost(st) =22 Ci(s! [defn of cost]

=22, [C(s’,8%) + A [A = Ci(sh)- Ci(s;,s)]

< 3, [Aecost(s’) + pecost(s!)] + 2, %, A; [smooth]
No regret: 2, A; <0 for each i.

To finish proof: divide through by T.
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Bells and Whistles

can allow baseline s”. to depend on s, but not s
POA bound extends to correlated equilibria

but notto no-regret sequences

applications include:

splittable routing games [Roughgarden/Schoppman 11]

Ic\)/||om|on formatlon games [Bhawalkar/Gollapudi/
unagala 1

%?]quential composition of auctions [Syrgkanis/Tardos
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Incomplete-Information Games

Game of incomplete information: [Harsanyi 67,68]
specified by players, types, actions, payofts.

* e.g., type = private valuation for a good
« player payoff depends on outcome and type

 strategy: function from types to actions
semantics: “if my type is t, then | will play action a”

Common Prior Assumption: types drawn from a
distribution known to all players (independent, or not)

* realization of type i known only to player i




Example: First-Price Auction

Bayes-Nash Equilibrium: every player picks expected
utility-maximizing action, given its knowledge.

Exercise: with n bidders, valuations drawn i.i.d. from
U[O,1], the following is a Bayes-Nash equilibrium: all
bidders use the strategy v, — [(n-1)/n] ¢ v,

 highest-valuation player wins (maximizes welfare)




Example: First-Price Auction

Bayes-Nash Equilibrium: every player picks expected
utility-maximizing action, given its knowledge.

Exercise: with n bidders, valuations drawn i.i.d. from
U[O,1], the following is a Bayes-Nash equilibrium: all
bidders use the strategy v, — [(n-1)/n] ¢ v,

 highest-valuation player wins (maximizes welfare)

Exercise: with 2 bidders, valuations from U[0,1] and
U[0,2], no Bayes-Nash equilibrium maximizes
expected welfare. (Second bidder shades bid more.)




POA with Incomplete Information: The
Best-Case Scenario

Ideal: POA bounds w.r.t an arbitrary prior distribution.

(or maybe assuming only independence)

Observation: point mass prior distribution <& game of
full-information (Bayes-Nash equilibria <~ Nash eq).




POA with Incomplete Information: The
Best-Case Scenario

Ideal: POA bounds w.r.t an arbitrary prior distribution.
(or maybe assuming only independence)

Observation: point mass prior distribution <& game of
full-information (Bayes-Nash equilibria << Nash eq).

Coolest Statement That Could Be True: POA of Bayes-
Nash equilibria (for worst-case prior distribution) same
as that of Nash equilibria in worst induced full-info
game. (Observation above =>can only be worse)




|deal Extension Theorem

Hypothesis: in every induced full-information game, a
smoothness-type proof shows that the POA of (pure)
Nash equilibria is a or better.

* induced full-info game & specific type profile
* exX: first-price auction with known valuations

Conclusion: for every common prior distribution, the
POA of (mixed) Bayes-Nash equilibria is a or better.
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Smoothness Paradigm
(Full Information)

1. Fix a game.
(fixes optimal outcomes)

2. Choose baseline s™ = some optimal outcome.
(in many games, only one option)

3. Fix outcome s.
4. Prove Z,Ci(s",s,) = Aecost(s’) + pecost(s).

5. Conclude that POA of no-regret sequences < A/(1-).
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1. Fix a setting and the private valuations.
(fixes optimal outcomes)
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Smoothness Paradigm
(Full => Incomplete)

1. Fix a setting and the private valuations.
(fixes optimal outcomes)

2. Choose baseline b® = some optimal outcome.

(note the large number of possible options) [Syrgkanis/
Tardos 13]

3. Fix outcome b.
4. Prove 2 u,(b",b;) = A[OPT Welfare] — Revenue(b).

5.
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(fixes optimal outcomes)

2. Choose baseline b® = some optimal outcome.

(note the large number of possible options) [Syrgkanis/
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3. Fix outcome b.
4. Prove 3 u(b",b,;) = A[OPT Welfare] — Revenue(b).

5. Conclude that POA of Bayes-Nash equilibria is = A.




Smoothness Paradigm
(Incomplete Information)

1. Fix a setting and the private valuations.
(fixes optimal outcomes)

2. Choose baseline b* = some optimal outcome.
(note the large number of possible options)

_ first-price auctions:
3. Fix outcome b. for suitable b*, A >

4. Prove 3 u(b,b_) = A[OPT Welfare] — Revenue(b).

5. Conclude that POA of Bayes-Nash equilibria is = A.




First-Price Auctions

Claim: for suitable choice of b’, for every b,
> u(b’,b;) = ¥%[OPT Welfare] — Revenue(b).

Proof: Set b’ = vi/2 for every i. (ala[Lucier/Paes Leme 11])

 since LHS = 0, can assume Y2¢[max; v;] > max; b,

* suppose bidder 1 has highest valuation. Then:
u,(b’y,b4) =v, — (v4/2) = v,/2 = Y%2¢[OPT Welfare]

Optimization: [Syrgkanis 12] 50% => 63% (different b’)




Smoothness Paradigm
(Incomplete Information)

1. Fix a setting and the private valuations.
(fixes optimal outcomes)

2. Choose baseline b® = some optimal outcome.
(note the large number of possible options)

general extension
3. Fix outcome b. theorem
4. Prove 3 u(b",b;) = A[OPT Welfarg] — Revenue(b).

5. Conclude that POA of Bayes-Nash equilibria is = A.




Extension Theorem (PNE)

Assume: for suitable choice of b’, for every b,
> u(b’,b;) = A°[OPT Welfare] — Rev(b).

Claim: POA of pure Nash equilibria is = A.




Extension Theorem (PNE)

Assume: for suitable choice of b’, for every b,
> u(b’,b;) = A°[OPT Welfare] — Rev(b).

Claim: POA of pure Nash equilibria is = A.

Proof: Let b = a pure Nash equilibrium. Then:
welfare(b) = Rev(b) + 2, u,(b) [defn of utility]
> Rev(b) + Z,u(b’,b;) [b aNash eq]
> Rev(b) + [A[OPT Welfare] — Rev(b)]
= A*[OPT Welfare]




Extension Theorem (BNE)

Assume: for suitable choice of b’, for every b,
2. u(b’,b;) = A [OPT Welfare] — Rev(b).

Claim: (x[Lucier/Paes Leme 11]) for all (possibly correlated)
valuation distributions, POA of Bayes-Nash eq is = A.

Proof: Let b() = a Bayes-Nash equilibrium. Then:

E [welfare(b(v))] = E,[Rev(b(v))] + = E, [u(b(v))] [defn of utility]
= E [Rev(b(v))] + % E [u,(b%(v),bi(v;))] [baBNE]
> E [Rev(b(v))] + [\*E [OPT Welfare] — E [Rev(b(v))]]
= A*E [OPT Welfare]




First-Price Auctions

Summary: for all (possibly correlated) valuation
distributions, every Bayes-Nash equilibrium of a first-
price auction has welfare at least 50% (or even 63%)
of the maximum possible.

* 63% is tight for correlated valuations [Syrgkanis 14]

 independent valuations = worst-case POA unknown
worst known example = 87% [Hartline/Hoy/Taggart 14]

* 63% extends to simultaneous single-item auctions
(covered tomorrow)




Further Applications

» first-price sponsored search auctions
[Caragiannis/Kaklamanis/Kanellopolous/Kyropoulou/
Lucier/Paes Leme/Tardos 12]

* greedy pay-as-bid combinatorial auctions
[Lucier/Borodin 10]

 pay-as-bid mechanisms based on LP rounding
[Duetting/Kesselheim/Tardos 15]




Second-Price Rules

simultaneous second-price auctions [Christodoulou/

Kovacs/Schapira 08]
worst-case POA = 50%, and this is tight (even for PNE)

truthful greedy combinatorial auctions [Borodin/

Lucier 10]
worst-case POA close to greedy approximation ratio

can be reinterpreted via modified smoothness
condition [Roughgarden 12, Syrgkanis 12]

“pluffing equilibria” => need a no overbidding
condition for non-trivial POA bounds




Revenue Covering

[Hartline/Hoy/Taggart 14] define “revenue covering”
for every b, Rev(b) = critical bids of winners in OPT

Implies smoothness condition
near-equivalent in some cases [Duetting/Kesselheim 15]

application #1: POA bounds w.r.t. revenue objective
e.g., simultaneous first-price auctions with monopoly reserves

application #2: [Hoy/Nekipelov/Syrgkanis 15] bound the
“empirical POA” from data
do not need to explicitly estimate valuations!

can prove instance-by-instance bounds that beat the worst-
case bound




Dynamic Auctions

[Lykouris/Syrgkanis/Tardos 15] first POA guarantees when
bidder population changing (p fraction drops out each
time step, replaced by new bidders).

« convergence to (Nash) equilibrium hopeless

 positive results for “adaptive learners” (assume
agents use sufficiently good learning algorithm)

* need baseline near-optimal strategy profiles (one per
time step) s.t. no player changes frequently

* novel use of differential privacy! (in the analysis)
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Multi-ltem Auctions

suppose m different items
for now: unit-demand valuations

subadd

each bidder i has private valuation
v; for each item |

Vi(S) 1= maX;i, s Vj

you are here




Simultaneous Composition

* suppose have mechanisms M,,...,M

* In their simultaneous composition:
new action space = product of the m action spaces

new allocation rule = union of the m allocation rules
new payment rule = sum of the m payment rules

* example: each M, a single-item first-price auction

Question: as a unit-demand bidder, how should you bid?
(not so easy)




Composition Preserves
Smoothness

Hypothesis: every single-item auction M; is A-smooth:
for every v, there exists b™ such that, for every b,

2. u(b’,b;) = A [OPT Welfare(v)] — Rev(b).

Theorem: [Syrgkanis/Tardos 13] if bidders are unit-demand,
then composed mechanism is also A-smooth.

holds more generally from arbitrary smooth M/’s and “XOS”
valuations (generalization of submodular)




Composition Preserves
Smoothness

Hypothesis: every single-item auction M; is A-smooth: for every v,
there exists b™ such that, for every b,

2. u(b’,b,;) = A[OPT Welfare(v)] — Rev(b).

Theorem: [Syrgkanis/Tardos 13] if bidders are unit-demand,
then composed mechanism is also A-smooth.

Proof idea: Fix unit-demand valuations v, fixes OPT.

« baseline strategy for a bidder i that gets item j in OPT
bid 0 in mechanisms other M,

in M;, use assumed baseline strategy for M,




Simultaneous First-Price
Auctions (First Try)

Consequence: for all (possibly correlated) unit-demand
valuation distributions, every Bayes-Nash equilibrium
of simultaneous first-price auctions has welfare at least
50% (or even 63%) of the maximum possible.

* prove smoothness inequality for first-price auction

* use composition theorem to extend smoothness to
simultaneous first-price auctions

 use extension theorem to conclude Bayes-Nash
POA bound for simultaneous first-price auctions




Counterexample

Fact: [Feldman/Fu/Gravin/Lucier 13], following [Bhawalkar/
Roughgarden 11] there are (highly correlated) valuation
distributions over unit-demand valuations such that
every Bayes-Nash equilibrium has expected welfare
arbitrary smaller than the maximum possible.

* idea: plant a random matching plus some additional
highly demanded items; by symmetry, a bidder can’t
detect the item “reserved” for it




Revised Statement

Consequence: for all product unit-demand valuation
distributions, every Bayes-Nash equilibrium of
simultneous first-price auction has welfare at least 50%
(or even 63%) of the maximum possible.

* prove smoothness inequality for first-price auction

* use composition theorem to extend smoothness to
simultaneous first-price auctions

* use modified extension theorem to conclude Bayes-
Nash POA bound for simultaneous first-price
auctions




Private Baseline Strategies

First-price auction: set b’ =v/2 for every i.
 independent of v; (“private” baseline strategies)

Simultaneous first-price auctions: b" is “bid half your
value only on the item j you get in OPT(v)”.

* “public” baseline strategies
 not well defined unless v known




Extension Theorem (BNE)

Assume: for suitable choice of b’, for every b,
2. u(b’,b;) = A [OPT Welfare] — Rev(b).

Claim: (x[Lucier/Paes Leme 11]) for all (possibly correlated)
valuation distributions, POA of Bayes-Nash eq is = A.

Proof: Let b() = a Bayes-Nash equilibrium. Then:
E [welfare(b(v))] = E,[Rev(b(v))] + = E, [u(b(v))] [defn of utility]

> E,[Rev(b(v))] €ZE,[u(b’(v).bi(v,))>[b a BNE]

> E [Rev(b(v))] + [\°E,[OPT Welfare] — E [Rev(b(v))]]

= A*E [OPT Welfare] deviation can depend
on v; but not v




Extension Theorem (BNE)

Assume: for suitable choice of private b’, for every b,
2. u(b’,b;) = A [OPT Welfare] — Rev(b).

Claim: (x[Lucier/Paes Leme 11]) for all (possibly correlated)
valuation distributions, POA of Bayes-Nash eq is = A.

Proof: Let b() = a Bayes-Nash equilibrium. Then:
E [welfare(b(v))] = E,[Rev(b(v))] + = E, [u(b(v))] [defn of utility]

> E,[Rev(b(v))] €ZE,[u(b’(v).bi(v,))>[b a BNE]

> E [Rev(b(v))] + [\°E,[OPT Welfare] — E [Rev(b(v))]]

= A*E [OPT Welfare] deviation can depend
on v; but not v




Modified Extension Theorem

Assume: for suitable choice of public b’, for every b,
>.u(b’,b;) = A [OPT Welfare] — Rev(b).

Theorem: [Syrgkanis/Tardos 13], following [Christodoulou/
Kovacs/Schapira 08] for all product valuation
distributions, POA of Bayes-Nash eq is = A.

Proof idea: to transform public b*; to a deviation:
« sample w_ from prior distribution
« play baseline strategy for valuation profile (v,,w.)
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Tight POA Bounds

Theorem: [Feldman/Fu/Gravin/Lucier 13], [Christodoulou/
Kovacs/Sgouritsa/Tang 14]

the worst-case POA of S1A’s with subadditive bidder
valuations is precisely 2.

.. i subadd
monotone subadditive valuations:

* Vi(AUB) =v(A) + v(B) for
all disjoint A,B




Tight POA Bounds

Theorem: [Feldman/Fu/Gravin/Lucier 13], [Christodoulou/
Kovacs/Sgouritsa/Tang 14]

the worst-case POA of S1A’s with subadditive bidder
valuations is precisely 2.

Probabnlnty
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Tight POA Bounds

Theorem: [Feldman/Fu/Gravin/Lucier 13], [Christodoulou/
Kovacs/Sgouritsa/Tang 14]

the worst-case POA of S1A’s with subadditive bidder
valuations is precisely 2.

Question: Can we do better?
(without resorting to the VCG mechanism)




The Upshot

Meta-theorem: equilibria are generally bound by the
same limitations as algorithms with polynomial
computation or communication.

* |lower bounds without explicit constructions!

Caveats: requires that equilibria are
* guaranteed to exist (e.g., mixed Nash equilibria)
 can be efficiently verified

Example consequence: no “simple” auction has POA
< 2 for bidders with subadditive valuations.




From Protocol Lower Bounds to
POA Lower Bounds

Theorem: [Roughgarden 14] Suppose:

* No nondeterministic subexponential-communication
protocol approximates the welfare-maximization

problem (with valuations V) to within factor of a.
i.e., impossible to decide OPT = W vs. OPT =W’ /a

Then worst-case POA of e-approximate mixed Nash

equilibria of every ‘simple” mechanism is at least a.
simple = number of strategies sub-doubly-exponential in m

€ can be as small as inverse polynomial in n and m

Point: : reduces lower bounds for equilibria to lower
bounds for communication protocols.




Consequences

Corollary: (via [Nisan/Segal 06], [Dobsinski/Nisan/Schapira 05])

« With subadditive bidder valuations, no simple auction

guarantees equilibrium welfare better than 50% OPT.
“simple”: bid space dimension =< subexponential in # of goods

« With general valuations, no simple auction guarantees
non-trivial equilibrium welfare.

Take-aways:
1. In these cases, S1A’s optimal among simple auctions.

2. With complements, complex bid spaces (e.g., package
bidding) necessary for welfare guarantees.




Why Approximate MNE?

Issue: in an S1A, number of strategies = (V,,, + 1)™
 valuations, bids assumed integral and poly-bounded

Consequence: can't efficiently guess/verify a MNE.

Theorem: [Lipton/Markakis/Mehta 03] a game with n players
and N strategies per player has an e-approximate
mixed Nash equilibrium with support size polynomial in

n, log N, and 1.
 proof idea based on sampling from an exact MNE




Nondeterministic Protocols

« each of n players has a private valuation v,

 a “referee” wants to convince the players that the
value of some function f(v4,...,v,) has the value z

- referees knows all v;’s and writes, in public view, an
alleged proof P that f(v,,...,v,) =z

 protocol accepts if and only if every player i accepts
the proof P (knowing only v))

e communication used = length (in bits) of proof P
- example: Non-Equality vs. Equality




From Protocol Lower Bounds to
POA Lower Bounds

Theorem: [Roughgarden 14] Suppose:

* No nondeterministic subexponential-communication
protocol approximates the welfare-maximization

problem (with valuations V) to within factor of a.
i.e., impossible to decide OPT = W vs. OPT =W’ /a

Then worst-case POA of e-approximate mixed Nash

equilibria of every ‘simple” mechanism is at least a.
simple = number of strategies sub-doubly-exponential in m

€ can be as small as inverse polynomial in n and m

Point: : reduces lower bounds for equilibria to lower
bounds for communication protocols.




Proof of Theorem

Suppose worst-case POA of e-MNE is p<a:

Input: game
G s.t. either
(1) OPT > W*
or (1) OPT <
W*/ a




Proof of Theorem

Suppose worst-case POA of e-MNE is p<a:

Protocol:
Input: game “proof” =

Q s.t. either £ -MNE x with
(i) OPT > W* ’| small support

or (11) OPT < (exists by
W*/ a LMM); players
verify it privately




Proof of Theorem

Suppose worst-case POA of e-MNE is p<a:

Protocol: ;1f E[wel(x)] > W*/
[nput: game “proof” = ;e jhen OPT >
G s.t. either & -MNE x with W#/ arsoin case (i)
(1) QPT > W* small support
or (1) OPT < (exists by
W*/a LMM); players

verify 1t privately




Proof of Theorem

Suppose worst-case POA of e-MNE |s p<a:

Protocol: i if E[wel(x)] > W*/

[nput: game “proof” = - a ;chen OPT >

G s.t. either & MNE x with W/ @50 in case (i)

(1) OPT > W~ 11 t

or (i1) OPT < zg?st:gipor \ if E[wel(x)] < W*/

B -« then OPT < |

W*/ o LMM); players g( 0/ :;W* <§N* ’
verify it privately s0 in case (ii)

Key point: every e-MNE is a short, efficiently
verifiable certificate for membership in case (ii).




Exact vs. Approximate
Equilibria

Claim: POA lower bounds for e-MNE with small enough €
essentially as good as for exact MNE. Reasons:

1.

All known upper bound techniques apply automatically

to approximate equilibria.
e.g., “smoothness proofs” [Roughgarden 09]

so our lower bounds limit all known proof techniques

2. Lower bounds for approximate equilibria can

sometimes be translated into bounds for exact
equilibria.

If POA of exact equilibria << POA of approximate
equilibria, the latter is likely more relevant (and robust).




More Applications

optimality results for “simple” auctions with
other valuation classes (general, XOS)

analogous results for combinatorial auctions
with succinct valuations (if coNP not in MA)

iImpossibility results for low-dimensional price
equilibria (assuming NP # coNP)
[Roughgarden/Talgam-Cohen 15]

unlikely to reduce planted clique to €-Nash
hardness




Open Questions

Tight POA bounds for important auction formats
e.g. first-price auctions with independent valuations

Best “simple” auction for submodular valuations?
S1A’s give 63% [Syrgkanis/Tardos 13], [Christodoulou et al 14]

> 77% impossible [Dobzinski/Vondrak 13] + [R14]
> 63% is possible with poly communication [Feige/Vondrak 06]

Design “natural” games with POA matching hardness

lower bound for the underlying optimization problem.
e.g., many auction and scheduling problems




FIN




